Carbon nanomaterials (CNMs) are widely used in industrial and medical sectors. The increasing exposure of CNMs necessitates the studies of their potential environmental and health effects. High-mobility group box-1 (HMGB1) is a nuclear DNA-binding protein, but when released from cells, may cause sustained inflammatory response and promote cell migration and invasion. In this work, we found that 7-day exposure of 2.5 mg/kg/day CNMs, including C60, single-walled carbon nanotubes, and graphene oxides significantly elevated the level of HMGB1 in blood and lung lavage fluids in C57BL/6 mice. Subsequently, cellular effects and underlying mechanism were explored by using Raw264.7. The results showed that noncytotoxic CNMs enhanced HMGB1 intracellular translocation and release via activating P2X7 receptor. Released HMGB1 further activated receptor for advanced glycation endproducts (RAGE) and downstream signaling pathway by upregulating RAGE and Rac1 expression. Simultaneously, CNMs prepared the cells for migration and invasion by modulating MMP2 and TIMP2 gene expression as well as cytoskeleton reorganization. Intriguingly, released HMGB1 from macrophages promoted the migration of nearby lung cancer cell, which can be efficiently inhibited by neutralizing antibodies against HMGB1 and RAGE. Taken together, our work demonstrated that CNMs stimulated HMGB1 release and cell migration/invasion through P2X7R-HMGB1-RAGE pathway. The revealed mechanisms might facilitate a better understanding on the inflammatory property and subsequent cell functional alteration of CNMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/toxsci/kfz190 | DOI Listing |
Pharmaceutics
December 2024
National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy.
Background/objectives: KRT23 was recently discovered as an epithelial-specific intermediate filament protein in the type I keratin family. Many studies have underlined keratin's involvement in several biological processes as well as in the pathogenesis of different diseases. Specifically, KRT23 was reported to affect the structural integrity of epithelial cells and to trigger cellular signaling leading to the onset of cancer.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
Triple-negative breast cancer (TNBC) represents an aggressive form of breast cancer with few available therapeutic options. Chemotherapy, particularly with drugs like doxorubicin (DOX), remains the cornerstone of treatment for this challenging subtype. However, the clinical utility of DOX is hampered by adverse effects that escalate with higher doses and drug resistance, underscoring the need for alternative therapies.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
This review explores the significant role of microfluidic technologies in advancing cancer research, focusing on the below key areas: droplet-based microfluidics, organ-on-chip systems, paper-based microfluidics, electrokinetic chips, and microfluidic chips for the study of immune response. Droplet-based microfluidics allows precise manipulation of cells and three-dimensional microtissues, enabling high-throughput experiments that reveal insights into cancer cell migration, invasion, and drug resistance. Organ-on-chip systems replicate human organs to assess drug efficacy and toxicity, particularly in the liver, heart, kidney, gut, lung, and brain.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Health Sciences Postgraduate Program, São Francisco University, Av. São Francisco de Assis, 218, Bragança Paulista, Sao Paulo 12916-900, Brazil.
The global increase in cancer cases and mortality has been associated with inflammatory processes, in which chemokines play crucial roles. These molecules, a subfamily of cytokines, are essential for the migration, adhesion, interaction, and positioning of immune cells throughout the body. Chemokines primarily originate in response to pathogenic stimuli and inflammatory cytokines.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA.
Besides various infectious and inflammatory complications, recent studies also indicated the significance of NLRP3 inflammasome in cancer progression and therapy. NLRP3-mediated immune response and pyroptosis could be helpful or harmful in the progression of cancer, and also depend on the nature of the tumor microenvironment. The activation of NLRP3 inflammasome could increase immune surveillance and the efficacy of immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!