We present Nucleosome Dynamics, a suite of programs integrated into a virtual research environment and created to define nucleosome architecture and dynamics from noisy experimental data. The package allows both the definition of nucleosome architectures and the detection of changes in nucleosomal organization due to changes in cellular conditions. Results are displayed in the context of genomic information thanks to different visualizers and browsers, allowing the user a holistic, multidimensional view of the genome/transcriptome. The package shows good performance for both locating equilibrium nucleosome architecture and nucleosome dynamics and provides abundant useful information in several test cases, where experimental data on nucleosome position (and for some cases expression level) have been collected for cells under different external conditions (cell cycle phase, yeast metabolic cycle progression, changes in nutrients or difference in MNase digestion level). Nucleosome Dynamics is a free software and is provided under several distribution models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765203PMC
http://dx.doi.org/10.1093/nar/gkz759DOI Listing

Publication Analysis

Top Keywords

nucleosome dynamics
16
nucleosome
9
nucleosome architecture
8
experimental data
8
dynamics tool
4
tool dynamic
4
dynamic analysis
4
analysis nucleosome
4
nucleosome positioning
4
positioning nucleosome
4

Similar Publications

Cellular chromatin displays heterogeneous structure and dynamics, properties that control diverse nuclear processes. Models invoke phase separation of conformational ensembles of chromatin fibers as a mechanism regulating chromatin organization . Here we combine biochemistry and molecular dynamics simulations to examine, at single base-pair resolution, how nucleosome spacing controls chromatin phase separation.

View Article and Find Full Text PDF

Organisms with smaller genomes often perform multiple functions using one multi-subunit protein complex. The Silent Information Regulator complex (SIRc) carries out all of the core functions of heterochromatin. SIR complexes first drive the initiation and spreading of histone deacetylation in an iterative manner.

View Article and Find Full Text PDF

The nucleosome is the fundamental structural unit of chromosome fibers. A DNA wraps around a histone octamer to form a nucleosome, while neighboring nucleosomes interact to form higher-order structures and fit gigabase-long DNAs into a small volume of the nucleus. Nucleosomes interrupt the access of transcription factors to a genomic region, and provide regulatory controls of gene expression.

View Article and Find Full Text PDF

Nucleosome is the basic structural unit of the genome. During processes like DNA replication and gene transcription, the conformation of nucleosomes undergoes dynamic changes, including DNA unwrapping and rewrapping, as well as histone disassembly and assembly. However, the wrapping characteristics of nucleosomes across the entire genome, including region-specificity and their correlation with higher-order chromatin organization, remains to be studied.

View Article and Find Full Text PDF

Hox genes play a pivotal role during development. Their expression is tightly controlled in a spatiotemporal manner, ensuring that specific body structures develop at the correct locations and times during development. Various genomics approaches have been used to capture temporal and dynamic regulation of Hox gene expression at the nucleosome/chromatin level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!