Some genes have repeatedly been found to control diverse adaptations in a wide variety of organisms. Such gene reuse reveals not only the diversity of phenotypes these unique genes control but also the composition of developmental gene networks and the genetic routes available to and taken by organisms during adaptation. However, the causes of gene reuse remain unclear. A small number of large-effect Mendelian loci control a huge diversity of mimetic butterfly wing color patterns, but reasons for their reuse are difficult to identify because the genetic basis of mimicry has primarily been studied in two systems with correlated factors: female-limited Batesian mimicry in Papilio swallowtails (Papilionidae) and non-sex-limited Müllerian mimicry in Heliconius longwings (Nymphalidae). Here, we break the correlation between phylogenetic relationship and sex-limited mimicry by identifying loci controlling female-limited mimicry polymorphism Hypolimnas misippus (Nymphalidae) and non-sex-limited mimicry polymorphism in Papilio clytia (Papilionidae). The Papilio clytia polymorphism is controlled by the genome region containing the gene cortex, the classic P supergene in Heliconius numata, and loci controlling color pattern variation across Lepidoptera. In contrast, female-limited mimicry polymorphism in Hypolimnas misippus is associated with a locus not previously implicated in color patterning. Thus, although many species repeatedly converged on cortex and its neighboring genes over 120 My of evolution of diverse color patterns, female-limited mimicry polymorphisms each evolved using a different gene. Our results support conclusions that gene reuse occurs mainly within ∼10 My and highlight the puzzling diversity of genes controlling seemingly complex female-limited mimicry polymorphisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968384PMC
http://dx.doi.org/10.1093/molbev/msz194DOI Listing

Publication Analysis

Top Keywords

gene reuse
16
female-limited mimicry
16
mimicry polymorphisms
12
mimicry polymorphism
12
mimicry
9
evolution diverse
8
diverse adaptations
8
color patterns
8
loci controlling
8
polymorphism hypolimnas
8

Similar Publications

Efficacy of PARPi re-maintenance therapy for recurrent ovarian cancer.

Front Oncol

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Objective: The current clinical data regarding the re-administration of PARPi maintenance therapy in platinum sensitive recurrent ovarian cancer (PSROC) is limited. This study aims to investigate the efficacy and associated factors of PARPi re-maintenance therapy in PSROC patients in China.

Methods: In this study, there were 201 patients with PSROC who had received maintenance therapy previously and achieved complete or partial response after platinum-based chemotherapy upon recurrence.

View Article and Find Full Text PDF

Fitness and adaptive evolution of a Rhodococcus sp. harboring dioxin-catabolic plasmids.

World J Microbiol Biotechnol

January 2025

Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China.

Catabolic plasmids are critical factors in the degradation of recalcitrant xenobiotics, such as dioxins. Understanding the persistence and evolution of native catabolic plasmids is pivotal for controlling their function in microbial remediation. Here, we track the fitness and evolution of Rhodococcus sp.

View Article and Find Full Text PDF

Combating Antibiotic Resistance in Persulfate-Based Advanced Oxidation Processes: Activation Methods and Energy Consumption.

Environ Res

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China.

Antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) have become increasing concerning issues, threatening human health. Persulfate-based advanced oxidation processes (PS-AOPs), due to their remarkable potential in combating antibiotic resistance, have garnered significant attention in the field of disinfection in recent years. In this review, we systematically evaluated the efficacy and underlying mechanism of PS integration with various activation methods for the elimination of ARB/ARGs.

View Article and Find Full Text PDF

Sarcoglycanopathies are rare forms of severe muscular dystrophies currently without a therapy. Mutations in sarcoglycan (SG) genes cause the reduction or absence of the SG-complex, a tetramer located in the sarcolemma that plays a protective role during muscle contraction. Missense mutations in SGCA, which cause α-sarcoglycanopathy, otherwise known as LGMD2D/R3, lead to folding defective forms of α-SG that are discarded by the cell quality control.

View Article and Find Full Text PDF

Dual-mode, regenerated DNA motor for simultaneous detection of viral gene fragments and diagnosis of infectious disease.

Biosens Bioelectron

January 2025

Shandong Key Laboratory of Biophysics, Institute of Biophysics, Institute of Rural Revitalization, School of Pharmacy, Dezhou University, 253023, Dezhou, China. Electronic address:

This study presents a dual-mode and regenerated DNA motor powered by exonuclease III (Exo III) for the simultaneous detection of viral gene fragments. The detection methodology is categorized into two distinct operational modes. The first mode emphasizes the simultaneous detection of two viral gene fragments from a specific virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!