Sphingobium fuliginis ATCC 27551, previously classified as Flavobacterium sp. ATCC 27551, degrades neurotoxic organophosphate insecticides and nerve agents through the activity of a membrane-associated organophosphate hydrolase. This study was designed to determine the complete genome sequence of S. fuliginis ATCC 27551 to unravel its degradative potential and adaptability to harsh environments. The 5,414,624 bp genome with a GC content of 64.4% is distributed between two chromosomes and four plasmids and encodes 5,557 proteins. Of the four plasmids, designated as pSF1, pSF2, pSF3, and pSF4, only two (pSF1 and pSF2) are self-transmissible and contained the complete genetic repertoire for a T4SS. The other two plasmids (pSF3 and pSF4) are mobilizable and both showed the presence of an oriT and relaxase-encoding sequences. The sequence of plasmid pSF3 coincided with the previously determined sequence of pPDL2 and included an opd gene encoding organophosphate hydrolase as a part of the mobile element. About 15,455 orthologous clusters were identified from among the cumulatively annotated genes of 49 Sphingobium species. Phylogenetic analysis done using the core genome consisting of 802 orthologous clusters revealed a close relationship between S. fuliginis ATCC 27551 and bacteria capable of degradation of polyaromatic hydrocarbon compounds. Genes coding for transposases, efflux pumps conferring resistance to heavy metals, and TonR-type outer membrane receptors are selectively enriched in the genome of S. fuliginis ATCC 27551 and appear to contribute to the adaptive potential of the organism to challenging and harsh environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934885PMC
http://dx.doi.org/10.1093/gbe/evz189DOI Listing

Publication Analysis

Top Keywords

atcc 27551
24
fuliginis atcc
20
adaptive potential
8
sphingobium fuliginis
8
organophosphate hydrolase
8
harsh environments
8
psf1 psf2
8
psf3 psf4
8
orthologous clusters
8
atcc
6

Similar Publications

Organophosphate hydrolases (OPH), hitherto known to hydrolyze the third ester bond of organophosphate (OP) insecticides and nerve agents, have recently been shown to interact with outer membrane transport components, namely, TonB and ExbB/ExbD. In an OPH negative background, Sphingopyxis wildii cells failed to transport ferric enterobactin and showed retarded growth under iron-limiting conditions. We now show the OPH-encoding organophosphate degradation () gene from Sphingobium fuliginis ATCC 27551 to be part of the iron regulon.

View Article and Find Full Text PDF

Sphingobium fuliginis ATCC 27551, previously classified as Flavobacterium sp. ATCC 27551, degrades neurotoxic organophosphate insecticides and nerve agents through the activity of a membrane-associated organophosphate hydrolase. This study was designed to determine the complete genome sequence of S.

View Article and Find Full Text PDF

Analysis of Polycaprolactone Microfibers as Biofilm Carriers for Biotechnologically Relevant Bacteria.

ACS Appl Mater Interfaces

September 2018

International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos, Plaza Misael Banuelos s/n , 09001 Burgos , Spain.

Polymeric electrospun fibers are becoming popular in microbial biotechnology because of their exceptional physicochemical characteristics, biodegradability, surface-to-volume ratio, and compatibility with biological systems, which give them a great potential as microbial supports to be used in production processes or environmental applications. In this work, we analyzed and compared the ability of Escherichia coli, Pseudomonas putida, Brevundimonas diminuta, and Sphingobium fuliginis to develop biofilms on different types of polycaprolactone (PCL) microfibers. These bacterial species are relevant in the production of biobased chemicals, enzymes, and proteins for therapeutic use and bioremediation.

View Article and Find Full Text PDF

Molecularly Imprinted Porous Aromatic Frameworks Serving as Porous Artificial Enzymes.

Adv Mater

July 2018

Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China.

Artificially designed enzymes are in demand as ideal catalysts for industrial production but their dense structure conceals most of their functional fragments, thus detracting from performance. Here, molecularly imprinted porous aromatic frameworks (MIPAFs) which are exploited to incorporate full host-guest interactions of porous materials within the artificial enzymes are presented. By decorating a porous skeleton with molecularly imprinted complexes, it is demonstrated that MIPAFs are porous artificial enzymes possessing excellent kinetics for guest molecules.

View Article and Find Full Text PDF

The plasmid encoding His-tagged organophosphorus hydrolase (OPH) cloned from Sphingobium fuliginis was modified to be transferred back to this bacterium. The replication function of S. amiense plasmid was inserted at downstream of OPH gene, and S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!