Summary: Many efforts have been made in developing bioinformatics algorithms to predict functional attributes of genes and proteins from their primary sequences. One challenge in this process is to intuitively analyze and to understand the statistical features that have been selected by heuristic or iterative methods. In this paper, we developed VisFeature, which aims to be a helpful software tool that allows the users to intuitively visualize and analyze statistical features of all types of biological sequence, including DNA, RNA and proteins. VisFeature also integrates sequence data retrieval, multiple sequence alignments and statistical feature generation functions.

Availability And Implementation: VisFeature is a desktop application that is implemented using JavaScript/Electron and R. The source codes of VisFeature are freely accessible from the GitHub repository (https://github.com/wangjun1996/VisFeature). The binary release, which includes an example dataset, can be freely downloaded from the same GitHub repository (https://github.com/wangjun1996/VisFeature/releases).

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btz689DOI Listing

Publication Analysis

Top Keywords

statistical features
12
github repository
8
visfeature
5
visfeature stand-alone
4
stand-alone program
4
program visualizing
4
visualizing analyzing
4
statistical
4
analyzing statistical
4
features biological
4

Similar Publications

Objectives: This study aimed to develop an automated method for generating clearer, well-aligned panoramic views by creating an optimized three-dimensional (3D) reconstruction zone centered on the teeth. The approach focused on achieving high contrast and clarity in key dental features, including tooth roots, morphology, and periapical lesions, by applying a 3D U-Net deep learning model to generate an arch surface and align the panoramic view.

Methods: This retrospective study analyzed anonymized cone-beam CT (CBCT) scans from 312 patients (mean age 40 years; range 10-78; 41.

View Article and Find Full Text PDF

Background: The prompt and accurate identification of mild cognitive impairment (MCI) is crucial for preventing its progression into more severe neurodegenerative diseases. However, current diagnostic solutions, such as biomarkers and cognitive screening tests, prove costly, time-consuming, and invasive, hindering patient compliance and the accessibility of these tests. Therefore, exploring a more cost-effective, efficient, and noninvasive method to aid clinicians in detecting MCI is necessary.

View Article and Find Full Text PDF

Background And Objectives: Guillain-Barré syndrome (GBS), an acute inflammatory disorder of the peripheral nervous system, is characterized by muscle weakness and paralysis. Prompt identification of patients at a high risk of poor outcomes is crucial for timely intervention. In this study, we combined clinical data with nerve conduction study and electromyography data to identify the predictors of GBS outcomes.

View Article and Find Full Text PDF

Introduction: Breath Volatile organic compounds (VOCs) are promising biomarkers for clinical purposes due to their unique properties. Translation of VOC biomarkers into the clinic depends on identification and validation: a challenge requiring collaboration, well-established protocols, and cross-comparison of data. Previously, we developed a breath collection and analysis method, resulting in 148 breath-borne VOCs identified.

View Article and Find Full Text PDF

Purpose: The dentato-rubro-thalamo-cortical tract (DRTC) is considered to play a crucial role across tremor disorders including tremor dominant Parkinson's disease (TDPD) and essential tremor plus (ETP). This study aims to comprehensively evaluate microstructural integrity of the DRTC using single-compartment, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!