We present a unified formal description and a detailed study of the depolarization spaces defined by various depolarization metrics based on the eigenvalues of the covariance matrix associated with a given Mueller matrix. By introducing natural generalizations of the common and Lorentz depolarization metrics, we likewise advance novel spaces appropriate for the description of extrinsic and intrinsic depolarization. We show the intimate relation existing between the depolarization spaces and the depolarization diagrams and solve the problem of the experimentally observed forbidden depolarization region. The theoretical developments are illustrated on numerical, analytical, and experimental examples of depolarizing Mueller matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.36.001173DOI Listing

Publication Analysis

Top Keywords

mueller matrices
8
depolarization spaces
8
depolarization metrics
8
depolarization
7
eigenvalue-based depolarization
4
depolarization metric
4
spaces
4
metric spaces
4
spaces mueller
4
matrices unified
4

Similar Publications

Optical polarization is three-dimensional (3-D). Its complete information is described by the nine-component generalized Stokes vector (GSV). However, existing Stokes polarimetry and its design theory are primarily based on the paraxial four-component Stokes vector and 4 × 4 Mueller matrices.

View Article and Find Full Text PDF

Estimation of Medium Depolarization Index with Noise Immunity in Catheter-Based PS-OCT toward Vascular Plaques Detection.

Chem Biomed Imaging

April 2024

School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China.

Article Synopsis
  • Medium depolarization imaging using catheter-based polarization-sensitive optical coherence tomography (PS-OCT) provides insights into lipid, macrophages, and cholesterol crystals in atherosclerotic plaques.
  • The paper presents a method to accurately estimate the medium depolarization index (EMDI), which shows improved noise immunity and accuracy compared to traditional measurements like depolarization index (DI) and degree of polarization uniformity (DOPU).
  • Experimental results indicate that EMDI enhances measurement accuracy by about 2.85 times and achieves a recognition rate of vascular plaques that is 2.99 to 4.65 times higher than DI and DOPU.
View Article and Find Full Text PDF

Mueller matrices provide a complete description of a medium's response to excitation by polarized light, and their characterization is important across a broad range of applications from ellipsometry in material science to polarimetry in biochemistry, medicine and astronomy. Here we introduce single-shot Mueller matrix polarimetry based on generalized measurements performed with a Poincaré beam. We determine the Mueller matrix of a homogeneous medium with unknown optical activity by detecting its optical response to a Poincaré beam, which across its profile contains all polarization states, and analyze the resulting polarization pattern in terms of four generalized measurements, which are implemented as a path-displaced Sagnac interferometer.

View Article and Find Full Text PDF

Local phase retardation (LPR) is increasingly recognized as a crucial biomarker for assessing disease progression. However, the presence of speckle noise significantly challenges its accuracy and polarization contrast. To address this challenge, we propose a signal-processing strategy aimed at reducing the impact of noise on LPR measurements.

View Article and Find Full Text PDF

Motivation: Imaging Mueller polarimetry has already proved its potential for biomedicine, remote sensing and metrology. The real-time applications of this modality require both video rate image acquisition and fast data post-processing algorithms. First, one must check the physical realizability of the experimental Mueller matrices in order to filter out non-physical data, ie to test the positive semi-definiteness of the 4 × 4 Hermitian coherency matrix calculated from the elements of corresponding Mueller matrix pixel-wise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!