Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper introduces a new, to the best of our knowledge, simple, fast, and affordable spectroscopy technique, in which Fresnel diffraction caused by a phase gradient step is used to determine the spectral profile of light sources by Fourier transformation of the interferogram data. To realize the phase gradient step, a Fresnel biprism or double mirror can be used. In principle, a single interferogram is sufficient to obtain the line profile. To demonstrate the technique, four light-emitting diode (LED) sources have been investigated using a Fresnel biprism with 0.52° apex angle and a Fresnel double mirror with an adjustable angle. The obtained results are confirmed by a commercial spectrometer showing relative uncertainties on the order of 10 for the linewidth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.58.005353 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!