Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To solve the problem of small field of view in traditional holographic waveguides, this paper proposes a waveguide-coupling technique using orthogonal superposition varied-line-spacing (VLS) gratings. These gratings expand the x and y directions and orthogonally superimpose to achieve transmission in a waveguide and enlarge the pupil field of view. At the optical coupling input end and the coupling output end of a waveguide, one-dimensional VLS gratings are used to realize horizontal expansion of the image. Then a vertical VLS grating is orthogonally superimposed at the exit end to realize vertical expansion of the image. Finally, the waveguide transmission and expansion of the image are completed. In the experiment, holographic polymer dispersed liquid crystal one-dimensional VLS gratings in the x and y directions are fabricated and coupled with a waveguide. An image source with a diameter of 0.5 cm is waveguide-transferred and coupled out, and then passed through the vertical grating. Amplification is performed to obtain an expanded image of a diameter of 2.28 cm. In this study, the diffraction characteristics of the grating used to realize pupil expansion in the holographic waveguide system are analyzed and simulated. It is calculated that the diffraction efficiency of the VLS gratings can reach 80% or more in the 532 nm band. Additionally, the characteristics of an electronically controlled switch are studied. Experimental results show that the method can be used for expanding the field of view and can be applied to waveguide systems for image transmission and expansion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.58.006622 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!