In this paper, we show that laser speckle analysis (LSA) can provide valuable information about the structure of crumpled thin sheets. Crumpling and folding of slender objects are present in several phenomena and in various ranges of size, e.g., paper compaction, cortical folding in brains, DNA packing in viral capsids, and flower buds, to name a few. The analysis of laser speckles, both numerical and graphical, is a source of information about the activity of biological or non-biological materials, and the development of digital electronics, which brought the ease of image processing, has opened new perspectives for a spectrum of LSA applications. LSA is applied on randomly crumpled and one-, two-, and three-times folded papers, and appreciable differences in LSA parameters are observed. The methodology can be applied for easy-to-implement quantitative assessment of similar phenomena and samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.58.006549 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!