A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Supervised classification approach of biometric measures for automatic fetal defect screening in head ultrasound images. | LitMetric

This paper presents an advanced approach for foetal brain abnormalities diagnostic by integrating significant biometric features in the identification process. In foetal anomaly diagnosis, manual evaluation of foetal behaviour in ultrasound images is a subjective, slow and error-prone task, especially in the preliminary treatment phases. The effectiveness of this appearance is strictly subject to the attention and the experience of gynaecologists. In this case, automatic methods of image analysis offer the possibility of obtaining a homogeneous, objective and above all fast diagnosis of the foetal head in order to identify pregnancy behaviour. Indeed, we propose a computerised diagnostic method based on morphological characteristics and a supervised classification method to categorise subjects into two groups: normal and affected cases. The presented method is validated on a real integrated microcephaly and dolichocephaly cases. The studied database contains the same gestational age of both normal and abnormal foetuses. The results show that the use of a support vector machine (SVM) classifier is an effective way to enhance recognition and detection for rapid and accurate foetal head diagnostic.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03091902.2019.1653389DOI Listing

Publication Analysis

Top Keywords

supervised classification
8
ultrasound images
8
foetal head
8
foetal
5
classification approach
4
approach biometric
4
biometric measures
4
measures automatic
4
automatic fetal
4
fetal defect
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!