An understanding of the postnatal development of hepatic UDP-glucuronosyltransferase (UGT) enzymes is required for accurate prediction of the age-dependent changes in pharmacokinetics of many drugs used in children. However, the maturation rate of hepatic UGT isoforms remains a major knowledge gap. This study aimed to establish the age-associated changes in glucuronidation activity of 10 major hepatic UGT isoforms in humans, namely, UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15, and UGT2B17. Human liver microsomes from pediatric and adult donors were incubated under optimized incubation conditions to assess the activity rates of hepatic UGT isoforms using a panel of 19 in vitro UGT probe substrates and clinically used drugs. Statistically strong correlations of glucuronidation activities allowed the ontogeny of UGT1A1, UGT1A4, UGT2B7, UGT2B10, and UGT2B15 to be established using multiple selective UGT substrates and matched human liver microsome samples. The postnatal development of hepatic UGTs is isoform-dependent using either individual or cross-correlated selective isoform substrates. Maximal adult activity was reached at different times ranging from within a month (UGT1A1, UGT2B4, UGT2B7, UGT2B10, and UGT2B15), during infancy (UGT1A3, UGT1A4, and UGT1A9), to adolescence (UGT1A6 and UGT2B17). This study provides an extensive characterization of the postnatal ontogeny profiles of hepatic UGT enzymes that are instrumental for predicting drug disposition via in vitro-in vivo extrapolation algorithms and verifying pharmacokinetic predictions against in vivo observations via pediatric physiologically based pharmacokinetic modeling in pediatric patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcph.1493DOI Listing

Publication Analysis

Top Keywords

hepatic ugt
16
human liver
12
ugt isoforms
12
ugt2b7 ugt2b10
12
ugt2b10 ugt2b15
12
hepatic udp-glucuronosyltransferase
8
glucuronidation activity
8
liver microsomes
8
postnatal development
8
development hepatic
8

Similar Publications

Evaluation of the Drug-Drug Interaction Potential of Cannabidiol Against UGT2B7-Mediated Morphine Metabolism Using Physiologically Based Pharmacokinetic Modeling.

Pharmaceutics

December 2024

Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E Spokane Falls Blvd., Spokane, WA 99202, USA.

Morphine is a commonly prescribed opioid analgesic used to treat chronic pain. Morphine undergoes glucuronidation by UDP-glucuronosyltransferase (UGT) 2B7 to form morphine-3-glucuronide and morphine-6-glucuronide. Morphine is the gold standard for chronic pain management and has a narrow therapeutic index.

View Article and Find Full Text PDF

SPT-07A, a D-borneol, is currently being developed in China for the treatment of ischemic stroke. We aimed to create a whole-body physiologically-based pharmacokinetic (PBPK) model to predict the pharmacokinetics of SPT-07A in rats, dogs, and humans. The in vitro metabolism of SPT-07A was studied using hepatic, renal, and intestinal microsomes.

View Article and Find Full Text PDF

Sleep deprivation alters hepatic UGT1A9 and propofol metabolism in mice.

Biochem Pharmacol

December 2024

Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, PR China. Electronic address:

Sleep deprivation (SD) causes circadian misalignment, and circadian clock disruption is associated with metabolic diseases such as obesity, insulin resistance, and diabetes. However, the underlying mechanism for SD-induced circadian clock disruption as well as metabolic enzyme changes is still lacking. Here, we developed SD sensitizes mice with disrupted circadian rhythms to demonstrate the regulation role and mechanism of SD in UDP-glucuronosyltransferases (UGTs) expression and the metabolism of corresponding substrates.

View Article and Find Full Text PDF

Inhibition of OATP1B1/3 Rather Than UGT1A1 May Be the Major Cause of the Bilirubin Elevation After Atazanavir Administration.

Clin Pharmacol Ther

December 2024

Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, California, USA.

Atazanavir has been reported to increase total serum bilirubin level up to ninefold. It is widely believed that the observed total bilirubin elevation is primarily due to UGT1A1 inhibition. However, UGT enzymes are well-known as a low-affinity and high-capacity system, and the observed drug-drug interaction mediated by UGTs is usually less than twofold.

View Article and Find Full Text PDF

CYP P450 and non-CYP P450 Drug Metabolizing Enzyme Families Exhibit Differential Sensitivities towards Proinflammatory Cytokine Modulation.

Drug Metab Dispos

November 2024

Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (L.M.J., C.H., D.-J.B., M.H., N.J.P, M.L.M); Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands (J.J.S); Centre for Human Drug Research, Leiden, Netherlands (R.R.); Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (R.R.); Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands (R.R.)

Compromised hepatic drug metabolism in response to proinflammatory cytokine release is primarily attributed to downregulation of cytochrome P450 (CYP) enzymes. However, whether inflammation also affects other phase I and phase II drug metabolizing enzymes (DMEs), such as the flavin monooxygenases (FMOs), carboxylesterases (CESs), and UDP glucuronosyltransferases (UGTs), remains unclear. This study aimed to decipher the impact of physiologically relevant concentrations of proinflammatory cytokines on expression and activity of phase I and phase II enzymes, to establish a hierarchy of their sensitivity as compared with the CYPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!