Humans navigate across a range of spatial scales, from rooms to continents, but the brain systems underlying spatial cognition are usually investigated only in small-scale environments. Do the same brain systems represent and process larger spaces? Here we asked subjects to compare distances between real-world items at six different spatial scales (room, building, neighborhood, city, country, continent) under functional MRI. Cortical activity showed a gradual progression from small to large scale processing, along three gradients extending anteriorly from the parahippocampal place area (PPA), retrosplenial complex (RSC) and occipital place area (OPA), and along the hippocampus posterior-anterior axis. Each of the cortical gradients overlapped with the visual system posteriorly and the default-mode network (DMN) anteriorly. These results suggest a progression from concrete to abstract processing with increasing spatial scale, and offer a new organizational framework for the brain's spatial system, that may also apply to conceptual spaces beyond the spatial domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739872 | PMC |
http://dx.doi.org/10.7554/eLife.47492 | DOI Listing |
J Expo Sci Environ Epidemiol
January 2025
Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Background: Elemental analysis of teeth allows for exposure assessment during critical windows of development and is increasingly used to link early life exposures and health. The measurement of inorganic elements in teeth is challenging; laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is the most widely used technique.
Objective: Both synchrotron x-ray fluorescence (SXRF) and LA-ICP-MS have the capability to measure elemental distributions in teeth with each having distinct advantages and disadvantages.
Nat Mater
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
Cells use 'active' energy-consuming motor and filament protein networks to control micrometre-scale transport and fluid flows. Biological active materials could be used in dynamically programmable devices that achieve spatial and temporal resolution that exceeds current microfluidic technologies. However, reconstituted motor-microtubule systems generate chaotic flows and cannot be directly harnessed for engineering applications.
View Article and Find Full Text PDFSci Rep
January 2025
The Alan Turing Institute, London, UK.
Air pollution in cities, especially NO, is linked to numerous health problems, ranging from mortality to mental health challenges and attention deficits in children. While cities globally have initiated policies to curtail emissions, real-time monitoring remains challenging due to limited environmental sensors and their inconsistent distribution. This gap hinders the creation of adaptive urban policies that respond to the sequence of events and daily activities affecting pollution in cities.
View Article and Find Full Text PDFSci Rep
January 2025
Centre for Earth, Ocean and Atmospheric Sciences, School of Physics, University of Hyderabad, Hyderabad, India.
We identified a set of bias-corrected and downscaled Coupled Model Intercomparison Project 6 (CMIP6) models capable of accurately simulating the observed mean Indian summer monsoon rainfall, extreme rain events (EREs) and their respective interannual variability. The future changes in EREs projected by these models for four climate change scenarios-Shared Socioeconomic Pathways (SSPs), 1-2.6, 2-4.
View Article and Find Full Text PDFInt J Pharm
January 2025
EPSRC CMAC Future Manufacturing Research Hub, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 99 George Street, Glasgow G1 1RD UK; The Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE UK.
Oral drug delivery remains the preferred method of drug administration but due to poor solubility many active pharmaceutical ingredients (APIs) are ill suited to this. A number of methods to improve solubility of poorly soluble Biopharmaceutical Classification System (BCS) Class II drugs already exist but there is a lack of scalable, flexible methods. As such the current study applies the innovative technique of aerosol jet printing to increase the dissolution capabilities of a Class II drug in a manner which permits flexibility to allow dosage form tailoring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!