The barrel cortex is within the primary somatosensory cortex of the rodent, and processes signals from the vibrissae. Much focus has been devoted to the function of neurons, more recently, the role of glial cells in the processing of sensory input has gained increasing interest. Microglia are the principal immune cells of the nervous system that survey and regulate the cellular constituents of the dynamic nervous system. We investigated the normal and disrupted development of microglia in barrel cortex by chronically depriving sensory signals via whisker trimming for the animals' first postnatal month. Using immunohistochemistry to label microglia, we performed morphological reconstructions as well as densitometry analyses as a function of developmental age and sensory experience. Findings suggest that both developmental age and sensory experience has profound impact on microglia morphology. Following chronic sensory deprivation, microglia undergo a morphological transition from a monitoring or resting state to an altered morphological state, by exhibiting expanded cell body size and retracted processes. Sensory restoration via whisker regrowth returns these morphological alterations back to age-matched control values. Our results indicate that microglia may be recruited to participate in the modulation of neuronal structural remodeling during developmental critical periods and in response to alteration in sensory input.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944757PMC
http://dx.doi.org/10.1002/cne.24771DOI Listing

Publication Analysis

Top Keywords

sensory experience
12
barrel cortex
12
microglia barrel
8
sensory input
8
nervous system
8
developmental age
8
age sensory
8
microglia
7
sensory
7
development sensory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!