Myeloid-derived suppressor cells (MDSC) are present in most cancer patients where they are significant contributors to the immune suppressive tumor microenvironment (TME). The TME is a hostile locale due to deficiencies in oxygen (hypoxia) and nutrients, and the presence of reactive oxygen species (ROS). The survival of tumor cells within the TME is partially governed by two mechanisms: (1) Activation of the transcription factor Nuclear Factor Erythroid-derived 2-like 2 (Nrf2) which turns on genes that attenuate oxidative stress; and (2) The presence of High Mobility Group Box Protein-1 (HMGB1), a damage-associated molecular pattern molecule (DAMP) that induces autophagy and protects against apoptosis. Because Nrf2 and HMGB1 promote tumor cell survival, we speculated that Nrf2 and HMGB1 may facilitate MDSC survival. We tested this hypothesis using Nrf2 and Nrf2 BALB/c and C57BL/6 mice and pharmacological inhibitors of HMGB1. In vitro and in vivo studies demonstrated that Nrf2 increased the suppressive potency and quantity of tumor-infiltrating MDSC by up-regulating MDSC production of HO and decreasing MDSC apoptosis. Decreased apoptosis was accompanied by a decrease in the production of MDSC, demonstrating that MDSC levels are homeostatically regulated. Pharmacological inhibition of autophagy increased MDSC apoptosis, indicating that autophagy increases MDSC half-life. Inhibition of HMGB1 also increased MDSC apoptosis and reduced MDSC autophagy. These results combined with our previous findings that HMGB1 drives the accumulation of MDSC demonstrate that HMGB1 maintains MDSC viability by inducing autophagy. Collectively, these findings identify Nrf2 and HMGB1 as important factors that enable MDSC to survive in the TME.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004852PMC
http://dx.doi.org/10.1007/s00262-019-02388-8DOI Listing

Publication Analysis

Top Keywords

mdsc
14
nrf2 hmgb1
12
mdsc apoptosis
12
myeloid-derived suppressor
8
suppressor cells
8
tumor microenvironment
8
hmgb1
8
increased mdsc
8
nrf2
7
autophagy
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!