Assessment of kinship detection using RNA-seq data.

Nucleic Acids Res

Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona 08916, Spain.

Published: December 2019

Analysis of RNA sequencing (RNA-seq) data from related individuals is widely used in clinical and molecular genetics studies. Prediction of kinship from RNA-seq data would be useful for confirming the expected relationships in family based studies and for highlighting samples from related individuals in case-control or population based studies. Currently, reconstruction of pedigrees is largely based on SNPs or microsatellites, obtained from genotyping arrays, whole genome sequencing and whole exome sequencing. Potential problems with using RNA-seq data for kinship detection are the low proportion of the genome that it covers, the highly skewed coverage of exons of different genes depending on expression level and allele-specific expression. In this study we assess the use of RNA-seq data to detect kinship between individuals, through pairwise identity by descent (IBD) estimates. First, we obtained high quality SNPs after successive filters to minimize the effects due to allelic imbalance as well as errors in sequencing, mapping and genotyping. Then, we used these SNPs to calculate pairwise IBD estimates. By analysing both real and simulated RNA-seq data we show that it is possible to identify up to second degree relationships using RNA-seq data of even low to moderate sequencing depth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868348PMC
http://dx.doi.org/10.1093/nar/gkz776DOI Listing

Publication Analysis

Top Keywords

rna-seq data
28
kinship detection
8
based studies
8
ibd estimates
8
rna-seq
7
data
7
sequencing
5
assessment kinship
4
detection rna-seq
4
data analysis
4

Similar Publications

The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.

View Article and Find Full Text PDF

A20 as a Potential Therapeutic Target for COVID-19.

Immun Inflamm Dis

January 2025

State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Background: Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major concern due to its astonishing prevalence and high fatality rate, especially among elderly people. Patients suffering from COVID-19 may exhibit immunosuppression in the initial stage of infection, while a cytokine storm can occur when the disease progresses to a severe stage. This inopportune immune rhythm not only makes patients more susceptible to the virus but also leads to numerous complications resulting from the excessive production of inflammatory factors.

View Article and Find Full Text PDF

Vigna marina (Barm.) Merr. is adapted to tropical marine beaches and has an outstanding tolerance to salt stress.

View Article and Find Full Text PDF

Revealing the role of natural killer cells in ankylosing spondylitis: identifying diagnostic biomarkers and therapeutic targets.

Ann Med

December 2025

Department of Rheumatology and Immunology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People's Republic of China.

Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease that primarily affects the axial joints. Immune cells play a key role in the pathogenesis of AS. This study integrated bioinformatics methods with experimental validation to explore the role of natural killer (NK) cells in AS.

View Article and Find Full Text PDF

Deep learning analyses of splicing variants identify the link of PCP4 with amyotrophic lateral sclerosis.

Brain

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, 200331, Shanghai, China.

Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease, with most sporadic cases lacking clear genetic causes. Abnormal pre-mRNA splicing is a fundamental mechanism in neurodegenerative diseases. For example, TAR DNA-binding protein 43 (TDP-43) loss-of-function (LOF) causes widespread RNA mis-splicing events in ALS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!