Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sampling of drinking water distribution systems is performed to ensure good water quality and protect public health. Sampling also satisfies regulatory requirements and is done to respond to customer complaints or emergency situations. Water distribution system modeling techniques can be used to plan and inform sampling strategies. However, a high degree of accuracy and confidence in the hydraulic and water quality models is required to support real-time response. One source of error in these models is related to uncertainty in model input parameters. Effective characterization of these uncertainties and their effect on contaminant transport during a contamination incident is critical for providing confidence estimates in model-based design and evaluation of different sampling strategies. In this paper, the effects of uncertainty in customer demand, isolation valve status, bulk reaction rate coefficient, contaminant injection location, start time, duration and rate on the size and location of the contaminant plume are quantified for two example water distribution systems. Results show that the most important parameter was the injection location. The size of the plume was also affected by the reaction rate coefficient, injection rate and the injection duration, while the the exact location of the plume was additionally affected by the isolation valve status. Uncertainty quantification provides a more complete picture of how contaminants move within a water distribution system and provides more information when using modeling results to select sampling locations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733274 | PMC |
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0001005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!