Immediate and deferred epigenomic signatures of in vivo neuronal activation in mouse hippocampus.

Nat Neurosci

Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain.

Published: October 2019

Activity-driven transcription plays an important role in many brain processes, including those underlying memory and epilepsy. Here we combine genetic tagging of nuclei and ribosomes with RNA sequencing, chromatin immunoprecipitation with sequencing, assay for transposase-accessible chromatin using sequencing and Hi-C to investigate transcriptional and chromatin changes occurring in mouse hippocampal excitatory neurons at different time points after synchronous activation during seizure and sparse activation by novel context exploration. The transcriptional burst is associated with an increase in chromatin accessibility of activity-regulated genes and enhancers, de novo binding of activity-regulated transcription factors, augmented promoter-enhancer interactions and the formation of gene loops that bring together the transcription start site and transcription termination site of induced genes and may sustain the fast reloading of RNA polymerase complexes. Some chromatin occupancy changes and interactions, particularly those driven by AP1, remain long after neuronal activation and could underlie the changes in neuronal responsiveness and circuit connectivity observed in these neuroplasticity paradigms, perhaps thereby contributing to metaplasticity in the adult brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6875776PMC
http://dx.doi.org/10.1038/s41593-019-0476-2DOI Listing

Publication Analysis

Top Keywords

neuronal activation
8
chromatin
5
deferred epigenomic
4
epigenomic signatures
4
signatures vivo
4
vivo neuronal
4
activation
4
activation mouse
4
mouse hippocampus
4
hippocampus activity-driven
4

Similar Publications

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Basal forebrain innervation of the amygdala: an anatomical and computational exploration.

Brain Struct Funct

January 2025

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.

Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.

View Article and Find Full Text PDF

The study explored the pathological mechanism of doxorubicin chemotherapy-induced neurotoxicity and the intervention methods of traditional Chinese medicine. BALB/c mice were selected to establish tumor-bearing mouse models by orthotopic injection of 4T1 triple-negative breast cancer cells. After randomization, the mice were treated with doxorubicin chemotherapy or doxorubicin chemotherapy + Kaixin San(KXS).

View Article and Find Full Text PDF

Effects of natural source polysaccharides on neurological diseases: A review.

Int J Biol Macromol

January 2025

Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China. Electronic address:

With the aging of society and changes in lifestyle, the incidence of neurological diseases (NDs) has been increasing year by year, bringing a heavy burden to patients and society. Although the efficacy of chemical drugs in the treatment of NDs is remarkable, there are problems such as high side effects and high costs. Therefore, finding mild and efficient drugs for NDs treatment has become an urgent clinical need.

View Article and Find Full Text PDF

14-3-3θ phosphorylation exacerbates alpha-synuclein aggregation and toxicity.

Neurobiol Dis

January 2025

Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America. Electronic address:

Aggregation of alpha-synuclein (αsyn) plays an integral role in Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). 14-3-3θ is a highly expressed brain protein with chaperone-like activity that regulates αsyn folding. 14-3-3θ overexpression reduces αsyn aggregation, transmission between cells, and neuronal loss, while 14-3-3 inhibition promotes αsyn pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!