Fecal microbiota transfer (FMT) is a very efficient approach for the treatment of severe and recurring C. difficile infections. However, the beneficial effect of FMT in other disorders such as ulcerative colitis (UC) or Crohn's disease remains unclear. Furthermore, it is currently unknown how disease-associated genetic variants in donors or recipients influence the effect of FMT. We found that bacteria-transfer from wild-type (WT) donors via cohousing was efficient in inducing recovery from colitis in WT mice, but not in mice deficient in protein-tyrosine phosphatase non-receptor type 22 (PTPN22), a known risk gene for several chronic inflammatory diseases. Also cohousing of PTPN22-deficient mice with diseased WT mice failed to induce faster recovery. Our data indicate that the genetic background of the donor and the recipient influences the outcome of microbiota transfer, and offers a potential explanation why transfer of fecal microbes from some, but not all donors is efficient in UC patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41385-019-0201-1 | DOI Listing |
Nutrients
January 2025
Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
Background/objectives: Dysgeusia contributes to malnutrition and worsens the quality of life of patients with cancer. Despite the different strategies, there is no effective treatment for patients suffering from taste disorders provided by the pharmaceutical industry. Therefore, we developed a novel strategy for reducing side effects in cancer patients by providing a novel food supplement with the taste-modifying glycoprotein miraculin, which is approved by the European Union, as an adjuvant to medical-nutritional therapy.
View Article and Find Full Text PDFMicroorganisms
January 2025
Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca 68120, Oaxaca, Mexico.
Breast milk is a fluid of vital importance during the first stages of life of the newborn since, in addition to providing nutrients, it also contains cells and molecules of the immune system, which protect the neonate from infection and, at the same time, modulate the establishment of the microbiota. Bactericidal/permeability-increasing protein (BPI) is relevant in preventing disease and sepsis in neonates. Therefore, the following work aimed to demonstrate the presence of BPI in the different stages of breast milk and its possible immune functions.
View Article and Find Full Text PDFBiomolecules
January 2025
Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran.
The growing prevalence of antibiotic-resistant bacteria within the human microbiome has become a pressing global health crisis. While antibiotics have revolutionized medicine by significantly reducing mortality and enabling advanced medical interventions, their misuse and overuse have led to the emergence of resistant bacterial strains. Key resistance mechanisms include genetic mutations, horizontal gene transfer, and biofilm formation, with the human microbiota acting as a reservoir for antibiotic resistance genes (ARGs).
View Article and Find Full Text PDFMicrobiome
January 2025
Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA.
Background: The evolving infant gut microbiome influences host immune development and later health outcomes. Early antibiotic exposure could impact microbiome development and contribute to poor outcomes. Here, we use a prospective longitudinal birth cohort of n = 323 healthy term African American children to determine the association between antibiotic exposure and the gut microbiome through shotgun metagenomics sequencing as well as bile acid profiles through liquid chromatography-mass spectrometry.
View Article and Find Full Text PDFInflamm Bowel Dis
January 2025
Division of Gastroenterology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
Background And Aims: Inflammation can generate pathogenic Th17 cells and cause an inflammatory dysbiosis. In the context of inflammatory bowel disease (IBD), these inflammatory Th17 cells and dysbiotic microbiota may perpetuate injury to intestinal epithelial cells. However, many models of IBD like T-cell transfer colitis and IL-10-/- mice rely on the absence of regulatory pathways, so it is difficult to tell if inflammation can also induce protective Th17 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!