Food and diet were class markers in 19th-century Ireland, which became evident as nearly 1 million people, primarily the poor and destitute, died as a consequence of the notorious Great Famine of 1845 to 1852. Famine took hold after a blight destroyed virtually the only means of subsistence-the potato crop-for a significant proportion of the population. This study seeks to elucidate the variability of diet in mid-19th-century Ireland through microparticle and proteomic analysis of human dental calculus samples ( = 42) from victims of the famine. The samples derive from remains of people who died between August 1847 and March 1851 while receiving poor relief as inmates in the union workhouse in the city of Kilkenny (52°39' N, -7°15' W). The results corroborate the historical accounts of food provisions before and during the famine, with evidence of corn (maize), potato, and cereal starch granules from the microparticle analysis and milk protein from the proteomic analysis. Unexpectedly, there is also evidence of egg protein-a food source generally reserved only for export and the better-off social classes-which highlights the variability of the prefamine experience for those who died. Through historical contextualization, this study shows how the notoriously monotonous potato diet of the poor was opportunistically supplemented by other foodstuffs. While the Great Irish Famine was one of the worst subsistence crises in history, it was foremost a social disaster induced by the lack of access to food and not the lack of food availability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765296 | PMC |
http://dx.doi.org/10.1073/pnas.1908839116 | DOI Listing |
Front Biosci (Elite Ed)
October 2024
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.
Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.
Anal Chim Acta
January 2025
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China; University of Chinese Academy of Sciences, 100049, Beijing, China. Electronic address:
Serum tests have become a partial alternative to renal biopsy for diagnosing primary membranous nephropathy (pMN). However, urine tests, due to their non-invasive nature and ability to more accurately reflect glomerular diseases, hold great promise for the detection of pMN. However, the low protein concentration and the time-consuming sample preparation procedure of urine samples challenges the proteomic and glycoproteomic analysis to find urine-derived signatures associated with pMN.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Oral Biology, Faculty of Dentistry, Mahidol University, 6 Yothi Road, Ratchathewi, Bangkok, 10400, Thailand.
Exosomes derived from the stem cells of human exfoliated deciduous teeth (SHED) hold promise for tissue regeneration. Apoptotic cells release a variety of extracellular vesicles that affect intercellular communication. This study aimed to investigate the angiogenic effects of SHED-derived exosomes modified via apoptosis induction on human umbilical vein endothelial cells (HUVECs).
View Article and Find Full Text PDFSci Rep
November 2024
Department of Clinical Medicine, Aalborg University, 249 Selma Lagerløfs Vej, room 11.03.025, DK-9260, Aalborg, Gistrup, Denmark.
Ecotoxicol Environ Saf
November 2024
Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland. Electronic address:
The extensive production and use of plastics in recent decades has led to environmental pollution. It has been discovered that plastic microparticles (MPs) and nanoparticles (NPs), formed under the influence of physical forces, can pose a significant health risk. Increasing evidence indicates that NPs can have various toxic effects, including oxidative stress and cell death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!