Background: Myocardial T1-mapping is increasingly used in multicentre studies and trials. Inconsistent image analysis introduces variability, hinders differentiation of diseases, and results in larger sample sizes. We present a systematic approach to standardize T1-map analysis by human operators to improve accuracy and consistency.
Methods: We developed a multi-step training program for T1-map post-processing. The training dataset contained 42 left ventricular (LV) short-axis T1-maps (normal and diseases; 1.5 and 3 Tesla). Contours drawn by two experienced human operators served as reference for myocardial T1 and wall thickness (WT). Trainees (n = 26) underwent training and were evaluated by: (a) qualitative review of contours; (b) quantitative comparison with reference T1 and WT.
Results: The mean absolute difference between reference operators was 8.4 ± 6.3 ms (T1) and 1.2 ± 0.7 pixels (WT). Trainees' mean discrepancy from reference in T1 improved significantly post-training (from 8.1 ± 2.4 to 6.7 ± 1.4 ms; p < 0.001), with a 43% reduction in standard deviation (SD) (p = 0.035). WT also improved significantly post-training (from 0.9 ± 0.4 to 0.7 ± 0.2 pixels, p = 0.036), with 47% reduction in SD (p = 0.04). These experimentally-derived thresholds served to guide the training process: T1 (±8 ms) and WT (±1 pixel) from reference.
Conclusion: A standardized approach to CMR T1-map image post-processing leads to significant improvements in the accuracy and consistency of LV myocardial T1 values and wall thickness. Improving consistency between operators can translate into 33-72% reduction in clinical trial sample-sizes. This work may: (a) serve as a basis for re-certification for core-lab operators; (b) translate to sample-size reductions for clinical studies; (c) produce better-quality training datasets for machine learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijcard.2019.08.058 | DOI Listing |
Neuro Oncol
January 2025
Department of Medicine, Division of Experimental Medicine, McGill University.
Background: Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma.
View Article and Find Full Text PDFNeurology
February 2025
School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
Background And Objectives: Lipid metabolism in older adults is affected by various factors including biological aging, functional decline, reduced physiologic reserve, and nutrient intake. The dysregulation of lipid metabolism could adversely affect brain health. This study investigated the association between year-to-year intraindividual lipid variability and subsequent risk of cognitive decline and dementia in community-dwelling older adults.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
Background And Objectives: Invasive procedures may delay the diagnostic process in multiple sclerosis (MS). We investigated the added value of serum neurofilament light chain (sNfL), glial fibrillary acidic protein (sGFAP), chitinase-3-like 1 (sCHI3L1), and the immune responses to the Epstein-Barr virus-encoded nuclear antigen 1 to current MS diagnostic criteria.
Methods: In this multicentric study, we selected patients from 2 prospective cohorts presenting a clinically isolated syndrome (CIS).
Database (Oxford)
January 2025
Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.
The European Union's ban on animal testing for cosmetic products and their ingredients, combined with the lack of validated animal-free methods, poses challenges in evaluating their potential repeated-dose organ toxicity. To address this, innovative strategies like Next-Generation Risk Assessment (NGRA) are being explored, integrating historical animal data with new mechanistic insights from non-animal New Approach Methodologies (NAMs). This paper introduces the TOXIN knowledge graph (TOXIN KG), a tool designed to retrieve toxicological information on cosmetic ingredients, with a focus on liver-related data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!