AI Article Synopsis

Article Abstract

Rayleigh surface acoustic waves (SAWs) have been demonstrated as a powerful and effective means for driving a wide range of microfluidic actuation processes. Traditionally, SAWs have been generated on piezoelectric substrates, although the cost of the material and the electrode deposition process makes them less amenable as low-cost and disposable components. As such, a "razor-and-blades" model that couples the acoustic energy of the SAW on the piezoelectric substrate through a fluid coupling layer and into a low-cost and, hence, disposable silicon superstrate on which various microfluidic processes can be conducted has been proposed. Nevertheless, it was shown that only bulk vibration in the form of Lamb waves can be excited in the superstrate, which is considerably less efficient and flexible in terms of microfluidic functionality compared to its surface counterpart, that is, the SAW. Here, we reveal an extremely simple way that quite unexpectedly and rather nonintuitively allows SAWs to be generated on the superstrate-by coating the superstrate with a thin gold layer. In addition to verifying the existence of the SAW on the coated superstrate, we carry out finite-difference time domain numerical simulations that not only confirm the experimental observations but also facilitate an understanding of the surprising difference that the coating makes. Finally, we elucidate the various power-dependent particle concentration phenomena that can be carried out in a sessile droplet atop the superstrate and show the possibility for simply carrying out rapid and effective microcentrifugation-a process that is considerably more difficult with Lamb wave excitation on the superstrate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b02850DOI Listing

Publication Analysis

Top Keywords

saws generated
8
low-cost disposable
8
superstrate
6
lamb rayleigh
4
rayleigh wave
4
wave conversion
4
conversion superstrates
4
superstrates facilitate
4
facilitate disposable
4
disposable acoustomicrofluidic
4

Similar Publications

Landscapers are exposed to noise, carbon monoxide (CO), respirable dust, and respirable crystalline silica (RCS) generated from the tools they use. Although engineering controls are available to reduce these exposures, no previous study has evaluated chronic exposures to landscapers in different work settings and compared exposures from landscaping tools with and without engineering controls. This field study of workers in the landscaping services industry documented the occupational exposures of 80 participants at 11 varied worksites to noise, CO, respirable dust, and RCS using personal breathing zone sampling.

View Article and Find Full Text PDF

The current key issues in applying acoustofluidics in engineering lie in the inflexibility of manufacturing processes, particularly those involving modifications to piezoelectric materials and devices. This leads to inefficient prototyping and potentially high costs. To overcome these limitations, we proposed a technique that is capable of prototyping acoustofluidic devices in a straightforward manner.

View Article and Find Full Text PDF

Acoustic Modulation of Excitonic Complexes in hBN/WSe/hBN Heterostructures.

Nano Lett

December 2024

Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, 13083-859 Campinas, Brazil.

The interaction of high-frequency surface acoustic waves (SAWs) and excitons in van der Waals heterostructures (vdWHs) offers challenging opportunities to explore novel quantum effects and functionalities. We probe the interaction of neutral excitons, trions, and biexcitons with SAWs in a hBN/WSe/hBN vdWH. We show that neutral excitons respond weakly to the SAW stimulus at 5 K.

View Article and Find Full Text PDF

Introduction: An abdominal aortic aneurysm (AAA) is a dilation localized in the infrarenal segment of the abdominal aorta that can expand continuously and rupture if left untreated. Computational methods such as finite element analysis (FEA) are widely used with in silico models to calculate biomechanical predictors of rupture risk while choosing constitutive material properties for the AAA wall and intraluminal thrombus (ILT).

Methods: In the present work, we investigated the effect of different constitutive material properties for the wall and ILT on 21 idealized and 10 unruptured patient-specific AAA geometries.

View Article and Find Full Text PDF

We propose an innovative design for interdigital transducers (IDTs), enabling phase modulation of surface acoustic waves (SAWs) with a dislocated electrode structure. By designing the size and arrangement of these dislocated IDTs, a novel type of Airy SAWs can be generated, exhibiting self-accelerating, self-bending, and self-healing characteristics. The acceleration of the generated Airy SAW is 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!