Though radiotherapy is a local therapy, it has systemic effects mainly influencing immune and inflammation processes. This has important consequences in the long-term prognosis and therapy individualization. Our objective was to investigate immune and inflammation-related changes in the peripheral blood of head and neck cancer patients treated with radiotherapy. Peripheral blood cells, plasma and blood cell-derived RNA were isolated from 23 patients before and at two time points after radiotherapy and cellular immune parameters, plasma protein changes and gene expression alterations were studied. Increased regulatory T cells and increased CTLA4 and PD-1 expression on CD4 cells indicated an immune suppression induced by the malignant condition, which was accentuated by radiotherapy. Circulating dendritic cells were strongly elevated before treatment and were not affected by radiotherapy. Decreased endoglin levels in the plasma of patients before treatment were further decreased by radiotherapy. Expression of the FXDR, SESN1, GADD45, DDB2 and MDM2 radiation-response genes were altered in the peripheral blood cells of patients after radiotherapy. All changes were long-lasting, detectable one month after radiotherapy. In conclusion we demonstrated radiotherapy-induced changes in systemic immune parameters of head and neck cancer patients and proposed markers suitable for patient stratification worth investigating in larger patient cohorts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770727 | PMC |
http://dx.doi.org/10.3390/cancers11091324 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.
Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.
Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.
J Integr Neurosci
January 2025
Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy.
The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.
View Article and Find Full Text PDFJ Oral Rehabil
January 2025
Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
Background: Surface electromyography (sEMG) has been used in a wide range of studies conducted in the field of dysphagia.
Objectives: The main aim of this case-control study is to obtain how submental and infrahyoid sEMG signals differ based on residue, penetration and aspiration.
Methods: A total of 100 participants (50 patients with suspected dysphagia and 50 healthy controls) were enrolled in the present study.
Viruses
December 2024
Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA.
Human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HPV-positive HNSCC) has distinct biological characteristics from HPV-negative HNSCC. Using an AI-based analytical platform on meta cohorts, we profiled expression patterns of viral transcripts and HPV viral genome integration, and classified the tumor microenvironment (TME). Unsupervised clustering analysis revealed five distinct and novel TME subtypes across patients (immune-enriched, highly immune and B-cell enriched, fibrotic, immune-desert, and immune-enriched luminal).
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.
Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!