Development and Characterization of Whey Protein-Based Nano-Delivery Systems: A Review.

Molecules

Department of Animal Bioscience and Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Korea.

Published: September 2019

Various bioactive compounds (BCs) often possess poor stability and bioavailability, which makes it difficult for them to exert their potential health benefits. These limitations can be countered by the use of nano-delivery systems (NDSs), such as nanoparticles and nanoemulsions. NDSs can protect BCs against harsh environments during food processing and digestion, and thereby, could enhance the bioavailability of BCs. Although various NDSs have been successfully produced with both synthetic and natural materials, it is necessary to fulfill safety criteria in the delivery materials for food applications. Food-grade materials for the production of NDSs, such as milk proteins and carbohydrates, have received much attention due to their low toxicity, biodegradability, and biocompatibility. Among these, whey proteins-from whey, a byproduct of cheese manufacturing-have been considered as excellent delivery material because of their high nutritional value and various functional properties, such as binding capability to various compounds, gelation, emulsifying properties, and barrier effects. Since the functional and physicochemical properties of whey protein-based NDSs, including size and surface charge, can be key factors affecting the applications of NDSs in food, the objectives of this review are to discuss how manufacturing variables can modulate the functional and physicochemical properties of NDSs and bioavailability of encapsulated BCs to produce efficient NDSs for various BCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6767039PMC
http://dx.doi.org/10.3390/molecules24183254DOI Listing

Publication Analysis

Top Keywords

whey protein-based
8
nano-delivery systems
8
ndss
8
functional physicochemical
8
physicochemical properties
8
bcs
5
development characterization
4
whey
4
characterization whey
4
protein-based nano-delivery
4

Similar Publications

Enhanced storage and gastrointestinal stability of spray-dried whey protein emulsions with chitosan and gum Arabic.

Int J Biol Macromol

January 2025

Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Science, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea. Electronic address:

Protein-based emulsions are widely utilized for delivering bioactives but suffer from thermodynamic instability, microbial spoilage, and gastrointestinal instability, necessitating enhancement strategies. This study explores the improvement of whey protein isolate (WPI) emulsions through chitosan (CS) coating and spray drying with maltodextrin (MD) or gum Arabic (GA). Canola oil droplets were stabilized with WPI, electrostatic coated with CS, and spray-dried.

View Article and Find Full Text PDF

This study aimed to develop a quercetin-loaded whey protein complex using pH-induced co-assembly for the intestinal-targeted delivery of quercetin. The investigation focused on quercetin loading capacity, formation mechanism, stability, antioxidant activity, and in vitro digestive properties of the complex. The results indicated that the stable complex was obtained at a quercetin-to-protein mass ratio of 1:20, exhibiting a high encapsulation efficiency (96.

View Article and Find Full Text PDF

Raw protein materials are beneficial for human health, so they are being increasingly used in health foods. In recent years, there has been more and more research on and applications of raw protein materials, but few teams have conducted a detailed review of the application status of raw protein materials in China's health foods, the basis for their compliance and use, and the research on their health care functions. Therefore, this review evaluates the application of animal and plant proteins in China's health foods, the impact of animal and plant proteins on human health, and future research recommendations for animal and plant proteins.

View Article and Find Full Text PDF

Background: Anabolic resistance accelerates muscle loss in aging and obesity, thus predisposing to sarcopenic obesity.

Methods: In this retrospective analysis of a randomized clinical trial, we examined baseline predictors of the adaptive response to three months of home-based resistance exercise, daily physical activity, and protein-based, multi-ingredient supplementation (MIS) in a cohort of free-living, older males ( = 32).

Results: Multiple linear regression analyses revealed that obesity and a Global Risk Index for metabolic syndrome (MetS) were the strongest predictors of Δ% gains in lean mass (TLM and ASM), LM/body fat ratios (TLM/%BF, ASM/FM, and ASM/%BF), and allometric LM (ASMI, TLM/BW, TLM/BMI, ASM/BW), with moderately strong, negative correlations to the adaptive response to polytherapy r = -0.

View Article and Find Full Text PDF

Whey Protein-Based Hydrogel Microspheres for Endovascular Embolization.

ACS Appl Bio Mater

January 2025

Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Transarterial embolization (TAE) is an image-guided, minimally invasive procedure for treating various clinical conditions by delivering embolic agents to occlude diseased arteries. Conventional embolic agents focus on vessel occlusion but can cause unintended long-term inflammation and ischemia in healthy tissues. Next-generation embolic agents must exhibit biocompatibility, biodegradability, and effective drug delivery, yet some degradable microspheres degrade too quickly, leading to the potential migration of fragments into distal blood vessels causing off-target embolization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!