Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To simulate numerically the collagen fibril reorientation observed experimentally in the cornea.
Methods: Fibril distribution in corneal strip specimens was monitored using X-ray scattering while under gradually increasing axial loading. The data were analysed at each strain level in order to quantify the changes in the angular distribution of fibrils with strain growth. The resulting relationship between stain and fibril reorientation was adopted in a constitutive model to control the mechanical anisotropy of the tissue material. The outcome of the model was validated against the experimental measurements before using the model in simplified representations of two surgical procedures.
Results: The numerical model was able to reproduce the experimental measurements of specimen deformation and fibril reorientation under uniaxial loading with errors below 8.0%. With tissue removal simulated in a full eye numerical model, fibril reorientation could be predicted around the affected area, and this change both increased with larger tissue removal and reduced gradually away from that area.
Conclusion: The presented method can successfully simulate fibril reorientation with changes in the strain regime affecting cornea tissue. Analyses based on this method showed that fibrils tend to align parallel to the tissue cut following keratoplasty operations. With the ability to simulate fibril reorientation, numerical modelling can have a greater potential in modelling the behaviour following surgery and injury to the cornea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6765893 | PMC |
http://dx.doi.org/10.3390/ijerph16183278 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!