Injectable hydrogel composed of hydrophobically modified chitosan/oxidized-dextran for wound healing.

Mater Sci Eng C Mater Biol Appl

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China. Electronic address:

Published: November 2019

An injectable hydrogel dressing with multifunctional properties of superior hemostasis, antibacterial activity, tissue adhesive and cytocompatibility is desirable candidate in wound healing. In this study, we developed a novel hydrogel dressing composed of hydrophobically modified chitosan (hmCS) and oxidized dextran (OD). The gelation time, microstructure, injectability, self-healing and rheological properties were characterized. The in vitro ability of the precursor solution of the hydrogels to coagulate heparinized whole blood was confirmed. The in vivo hemostatic activity was demonstrated in a rat hemorrhaging liver model. The antibacterial activity against S. aureus and P. aeruginosa was evaluated in vitro through surface antibacterial test. The corresponding killing efficiencies were up to 95.0% and 96.4% at bacterial concentration of 10 CFU/mL. The cytotoxicity was examined by co-culturing with 3 T3 fibroblast cells. The wound healing functions were further verified with an infected wound model of rat skin. The aforementioned findings demonstrated that the hydrogel with multifunctional activities has potential for hemorrhagic and infected wound healing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.109930DOI Listing

Publication Analysis

Top Keywords

wound healing
16
injectable hydrogel
8
composed hydrophobically
8
hydrophobically modified
8
hydrogel dressing
8
antibacterial activity
8
infected wound
8
wound
5
hydrogel composed
4
modified chitosan/oxidized-dextran
4

Similar Publications

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.

View Article and Find Full Text PDF

NIR photo-responsive injectable chitosan/hyaluronic acid hydrogels with controlled NO release for the treatment of MRSA infections.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530000, China. Electronic address:

Due to resistance to common antibiotics, methicillin-resistant Staphylococcus aureus (MRSA) infections pose a significant threat to human health. In this study, we developed an injectable, adhesive, and biocompatible hydrogel with multiple functions. Specifically, carboxymethyl chitosan (CMCS) crosslinked with hyaluronic acid (HA) forms the primary framework of the hydrogel.

View Article and Find Full Text PDF

The treatment of diabetic wounds with bacterial infection is a major challenge in the medical field. Microenvironment-responsive hydrogel dressings have shown great advantages, and photothermal antibacterial therapy is a potential antimicrobial strategy to avoid the generation of resistant bacteria. In this work, a glucose-triggered near-infrared (NIR)-responsive photothermal antibacterial hydrogel was designed and named GOGD based on a cascade reaction of glucose oxidation and polyphenol polymerization.

View Article and Find Full Text PDF

Xanthium strumarium/gelatin methacryloyl based hydrogels with anti-inflammatory and antioxidant properties for diabetic wound healing via akt/mtor pathway.

Int J Biol Macromol

January 2025

Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China. Electronic address:

Chronic wound healing is often hindered by long-term inflammation and redox imbalance. Herbal medicine, with its rich medicinal components such as polysaccharides, flavonoids, phenolic acids, and small-molecule nutrients, has gained attention for its anti-inflammatory and antioxidant properties. Xanthium strumarium (XS) is a potent anti-inflammatory herb that has shown promise in treating conditions like rhinitis and may have specific benefits for chronic skin wounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!