In the present study biobased and soft thermoplastic polyurethane (TPU), obtained by polymerization from fatty acids, was used to produce TPU/ZnO nanocomposite foams by thermally induced phase separation method (TIPS). The produced foams were characterized and evaluated regarding their potential uses as wound dressing materials. The structure and morphology of the prepared flexible polymer foams with different content of ZnO nanofiller (1, 2, 5 and 10 wt% related to the polymer) were studied by Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). Highly porous nanocomposite structure made of interconnected pores with dimensions between 10 and 60 μm was created allowing water vapor transmission rate (WVTR) up to 8.9 mg/cm·h. The TPU/ZnO foams, tested for their ability to support cells and their growth, showed highest cell proliferation for TPU nanocomposite foams with 2 and 5 wt% ZnO. Overall, the nanocomposite foams displayed a low cytotoxic potential (varied proportionally to the ZnO content) and good biocompatibility. All tested nanocomposite foams were found to be significantly active against biofilms formed by different Gram-positive (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Based on their behaviors, flexible TPU/ZnO nanocomposite foams can be considered for biomedical applications such as potential active wound dressing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2019.109893 | DOI Listing |
Polymers (Basel)
January 2025
Department of Mechanical Engineering, Chien-hsin University of Science and Technology, Taoyuan 320678, Taiwan.
Graphene's incorporation into polymers has enabled the development of advanced polymer/graphene nanocomposites with superior properties. This study focuses on the use of a microcellular foamed polystyrene (PS)/graphene (GP) nanocomposite (3 wt%) for nickel (II) ion removal from aqueous solutions. Adsorption behavior was evaluated through FTIR, TEM, SEM, TGA, and XRD analyses.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Nano Science and Nano Engineering Department, Ataturk University, Erzurum 25240, Turkey.
The main purpose of this study is to prepare a melamine aniline formaldehyde foam, an MAF copolymer, with lower water sensitivity and non-flammability properties obtained by the condensation reaction of melamine, aniline, and formaldehyde. In addition, the preparation of MAFF composites with organoclay reinforcement was determined as a secondary target in order to obtain better mechanical strength, heat, and sound insulation properties. For the synthesis of foams, the microwave irradiation technique, which offers advantages such as faster reactions, high yields and purities, and reduced curing times, was used together with the heating technique and the effect of organoclay content on the structural and textural properties of foams and both heat insulation and mechanical stability was investigated.
View Article and Find Full Text PDFLangmuir
December 2024
School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
Nanocomposite films made from graphene oxide (GO) and MXene have a dense layered structure due to nanosheet self-stacking, limiting their dye adsorption performance. In this study, acid-base neutralization reactions are used to induce MXene/reduced graphene oxide (RGO) films bulging, which opens the stacked layer structure within the membrane and enhances MB adsorption performance. The effects of the pH, temperature, contact time, and initial concentration of MB on the adsorption performance are further investigated.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland.
Nanocomposite flexible polyurethane foams (nFPUfs) were obtained by modifying the polyurethane formulation by adding a halloysite nano-filler in the amount of one to five parts by weight per hundred parts of used polyol (php). Flexible polyurethane (PU) foams with an open-cell structure and with a beneficial SAG factor were obtained. Premixes with nano-filler had a lower reactivity than the reference PU system.
View Article and Find Full Text PDFMolecules
October 2024
Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza Str., 112, 90363 Lodz, Poland.
This paper presents the novel development of a shape memory polymer foam based on polymer-polymer nanocomposites. Herein, polylactide (PLA)/biosourced polyamide (PA) foams are fabricated by in situ fibrillation of polymer blends and a subsequent supercritical CO foaming technique. In this system, PLA serves as a shape memory polymer to endow this foam with a shape memory effect (SME), and in situ generated PA nanofibers are employed to reinforce the PLA cell walls and provide an additional permanent phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!