Invariant theory and orientational phase transitions.

Phys Rev E

Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA.

Published: July 2019

The Landau theory of phase transitions has been productively applied to phase transitions that involve rotational symmetry breaking, such as the transition from an isotropic fluid to a nematic liquid crystal. It even can be applied to the orientational symmetry breaking of simple atomic or molecular clusters that are not true phase transitions. In this paper, we address fundamental problems that arise with the Landau theory when it is applied to rotational symmetry breaking transitions of more complex particle clusters that involve order parameters characterized by larger values of the l index of the dominant spherical harmonic that describes the broken symmetry state. The problems are twofold. First, one may encounter a thermodynamic instability of the expected ground state with respect to states with lower symmetry. A second problem concerns the proliferation of quartic invariants that may or may not be physical. We show that the combination of a geometrical method based on the analysis of the space of invariants, developed by Kim to study symmetry breaking of the Higgs potential, with modern visualization tools provides a resolution to these problems. The approach is applied to the outcome of numerical simulations of particle ordering on a spherical surface and to the ordering of protein shells.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.100.012145DOI Listing

Publication Analysis

Top Keywords

phase transitions
16
symmetry breaking
16
landau theory
8
rotational symmetry
8
symmetry
6
transitions
5
invariant theory
4
theory orientational
4
phase
4
orientational phase
4

Similar Publications

Versatile adhesive skin enhances robotic interactions with the environment.

Sci Adv

January 2025

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Electronic skins endow robots with sensory functions but often lack the multifunctionality of natural skin, such as switchable adhesion. Current smart adhesives based on elastomers have limited adhesion tunability, which hinders their effective use for both carrying heavy loads and performing dexterous manipulations. Here, we report a versatile, one-size-fits-all robotic adhesive skin using shape memory polymers with tunable rubber-to-glass phase transitions.

View Article and Find Full Text PDF

Gas-Phase Scattering of Transition Metal Atoms Fe, Ir, and Pt with CH, O, and CO.

J Phys Chem A

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China.

Understanding the interactions between transition metal atoms and molecules is important for the study of various related chemical and physical processes. In this study, we have investigated collisions between iron (Fe), iridium (Ir), and platinum (Pt) and the small molecules CH, O, and CO using a crossed-beam and time-sliced ion velocity map imaging technique. Elastic collisions were observed in all cases, except for collisions of Pt with O and CO.

View Article and Find Full Text PDF

Atmospheric CO is thought to play a fundamental role in Earth's climate regulation. Yet, for much of Earth's geological past, atmospheric CO has been poorly constrained, hindering our understanding of transitions between cool and warm climates. Beginning ~370 million years ago in the Late Devonian and ending ~260 million years ago in the Permian, the Late Palaeozoic Ice Age was the last major glaciation preceding the current Late Cenozoic Ice Age and possibly the most intense glaciation witnessed by complex lifeforms.

View Article and Find Full Text PDF

Phase Coexistence Induced Giant Dielectric Tunability and Electromechanical Response in PbZrO Epitaxial Thin Films.

Small

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

PbZrO (PZO) thin films, as a classic antiferroelectric material, have attracted tremendous attention for their excellent dielectric, electromechanical, and thermal switching performances. However, several fundamental questions remain unresolved, particularly the existence of an intermediate phase during the transition from the antiferroelectric (AFE) to ferroelectric (FE) state. Here, a phase coexistence configuration of an orthorhombic AFE phase and a tetragonal-like (T-like) phase is reported in epitaxial antiferroelectric PZO thin films, with thickness ranging from 16 to 110 nm.

View Article and Find Full Text PDF

Ultra-wide range control of topological acoustic waveguidesa).

J Acoust Soc Am

January 2025

Jianglu Mechanical Electrical Group Company Limited, Xiangtan 411105, China.

Topological acoustic waveguides have a potential for applications in the precise transmission of sound. Currently, there is more attention to multi-band in this field. However, achieving tunability of the operating band is also of great significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!