We investigate numerically the flow of an electrically conducting fluid in a rapidly rotating spherical shell where the inner boundary spins slightly faster than the outer one. The magnetic field evolves self-consistently from an initial dipolar configuration of weak amplitude, and a toroidal field is produced by winding this poloidal field through the internal differential rotation. First, we characterize the axisymmetric field solutions obtained at long times when the Lorentz force is negligible and the flow follows the steady, purely hydrodynamical solution. We then examine the stability of these solutions, focusing on the regime of large magnetic Reynolds numbers where the field is dominantly toroidal. When the ratio of the azimuthal Alfvén frequency to the rotation frequency exceeds a certain value, a nonaxisymmetric instability develops. We show that the instability properties are compatible with those expected for the magnetorotational instability. Finally, we compare the instability properties with predictions obtained from a local linear stability analysis. The linear analysis agrees well with the numerical simulation results, except in a number of cases where the discrepancies are attributed to shearing effects on the unstable modes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.100.013110 | DOI Listing |
Sci Adv
August 2024
Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aoba, Aramaki, Sendai 980-8578, Japan.
Accretion disks around compact stars are formed due to turbulence driven by magnetorotational instability. Despite over 30 years of numerous computational studies on magnetorotational turbulence, the properties of fluctuations in the inertial range-where cross-scale energy transfer dominates over energy injection-have remained elusive, primarily due to insufficient numerical resolution. Here, we report the highest-resolution simulation of magnetorotational turbulence ever conducted.
View Article and Find Full Text PDFNature
May 2024
Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, USA.
The magnetic dynamo cycle of the Sun features a distinct pattern: a propagating region of sunspot emergence appears around 30° latitude and vanishes near the equator every 11 years (ref. ). Moreover, longitudinal flows called torsional oscillations closely shadow sunspot migration, undoubtedly sharing a common cause.
View Article and Find Full Text PDFPhys Rev E
December 2023
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India.
Magnetorotational instability-driven (MRI-driven) turbulence and dynamo phenomena are analyzed using direct statistical simulations. Our approach begins by developing a unified mean-field model that combines the traditionally decoupled problems of the large-scale dynamo and angular momentum transport in accretion disks. The model consists of a hierarchical set of equations, capturing up to the second-order correlators, while a statistical closure approximation is employed to model the three-point correlators.
View Article and Find Full Text PDFSci Rep
September 2023
Department of Physics, FBAS, International Islamic University (IIUI), Islamabad, 44000, Pakistan.
We in this manuscript analyzed the magnetorotational instability (MRI) by using a multi-component quantum fluid model with the effect of spin magnetization in a differentially rotating degenerate electron-positron-ion (e-p-i) quantum plasma. The electrons and positron having the same mass but opposite charge are taken to be degenerate whereas ions are considered as classical owing to their large inertia. The general dispersion relation is derived and a local dispersion relation for MRI is obtained by applying MHD approximations.
View Article and Find Full Text PDFPhys Rev Lett
July 2023
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg, Potsdam-Golm 14476, Germany.
We perform a general-relativistic neutrino-radiation magnetohydrodynamic simulation of a one second-long binary neutron star merger on the Japanese supercomputer Fugaku using about 85 million CPU hours with 20 736 CPUs. We consider an asymmetric binary neutron star merger with masses of 1.2M_{⊙} and 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!