AI Article Synopsis

  • The study presents a new steganalysis method for JPEG images that utilizes convolutional neural networks (CNNs) to address challenges in high-dimensional data.
  • The proposed algorithm enhances the original rich model by incorporating various sizes of discrete cosine transform (DCT) basis functions to extract diverse detection features.
  • Experimental findings indicate that CNNs can classify effectively with fewer training samples compared to traditional ensemble classifiers, leading to improved overall performance.

Article Abstract

The best traditional steganalysis methods aiming at adaptive steganography are the combination of rich models and ensemble classifier. In this study, a new steganalysis method for JPEG images based on convolutional neural networks is proposed to solve the high dimension problem in steganalysis from another aspect. On the basis of the original rich model, the algorithm adds different sizes of discrete cosine transform (DCT) basis functions to extract different detection features. Different features are combined at the fully connected layer through inputting 2-D feature values to the neural network convolutional layer for predictive classification. Experimental results show that convolutional neural networks as classifiers do not require a large number of training samples, and the final classification performance is better than that of the original ensemble classifier.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2019201DOI Listing

Publication Analysis

Top Keywords

convolutional neural
12
neural networks
12
rich model
8
ensemble classifier
8
jpeg image
4
steganalysis
4
image steganalysis
4
steganalysis technique
4
technique combining
4
combining rich
4

Similar Publications

A comparative analysis of CNNs and LSTMs for ECG-based diagnosis of arrythmia and congestive heart failure.

Comput Methods Biomech Biomed Engin

January 2025

Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.

Cardiac arrhythmias are major global health concern and their early detection is critical for diagnosis. This study comprehensively evaluates the effectiveness of CNNs and LSTMs for the classification of cardiac arrhythmias, considering three PhysioNet datasets. ECG records are segmented to accommodate around ∼10s of ECG data.

View Article and Find Full Text PDF

Can Focusing on One Deep Learning Architecture Improve Fault Diagnosis Performance?

J Chem Inf Model

January 2025

Department of Chemical and Materials Engineering, Pontifical Catholic University of Rio de Janeiro, 225, Marquês de São Vicente Street, Gávea, Rio de Janeiro, RJ 22451-900, Brazil.

Machine learning approaches often involve evaluating a wide range of models due to various available architectures. This standard strategy can lead to a lack of depth in exploring established methods. In this study, we concentrated our efforts on a single deep learning architecture type to assess whether a focused approach could enhance performance in fault diagnosis.

View Article and Find Full Text PDF

Graph convolution network-based eeg signal analysis: a review.

Med Biol Eng Comput

January 2025

School of Control Science and Engineering, Tiangong University, Tianjin, 300387, China.

With the advancement of artificial intelligence technology, more and more effective methods are being used to identify and classify Electroencephalography (EEG) signals to address challenges in healthcare and brain-computer interface fields. The applications and major achievements of Graph Convolution Network (GCN) techniques in EEG signal analysis are reviewed in this paper. Through an exhaustive search of the published literature, a module-by-module discussion is carried out for the first time to address the current research status of GCN.

View Article and Find Full Text PDF

Objectives: We aimed to use artificial intelligence to accurately identify molecular subgroups of medulloblastoma (MB), predict clinical outcomes, and incorporate deep learning-based imaging features into the risk stratification.

Methods: The MRI features were extracted for molecular subgroups by a novel multi-parameter convolutional neural network (CNN) called Bi-ResNet-MB. Then, MR features were used to establish a prognosis model based on XGBoost.

View Article and Find Full Text PDF

Bayesian deep learning applied to diabetic retinopathy with uncertainty quantification.

Heliyon

January 2025

Information Technology Department, Technical College of Informatics-Akre, Akre University for Applied Sciences, Kurdistan Regain, Iraq.

Deep Learning (DL) has significantly contributed to the field of medical imaging in recent years, leading to advancements in disease diagnosis and treatment. In the case of Diabetic Retinopathy (DR), DL models have shown high efficacy in tasks such as classification, segmentation, detection, and prediction. However, DL model's opacity and complexity lead to errors in decision-making, particularly in complex cases, making it necessary to estimate the model's uncertainty in predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!