The best traditional steganalysis methods aiming at adaptive steganography are the combination of rich models and ensemble classifier. In this study, a new steganalysis method for JPEG images based on convolutional neural networks is proposed to solve the high dimension problem in steganalysis from another aspect. On the basis of the original rich model, the algorithm adds different sizes of discrete cosine transform (DCT) basis functions to extract different detection features. Different features are combined at the fully connected layer through inputting 2-D feature values to the neural network convolutional layer for predictive classification. Experimental results show that convolutional neural networks as classifiers do not require a large number of training samples, and the final classification performance is better than that of the original ensemble classifier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2019201 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India.
Cardiac arrhythmias are major global health concern and their early detection is critical for diagnosis. This study comprehensively evaluates the effectiveness of CNNs and LSTMs for the classification of cardiac arrhythmias, considering three PhysioNet datasets. ECG records are segmented to accommodate around ∼10s of ECG data.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Chemical and Materials Engineering, Pontifical Catholic University of Rio de Janeiro, 225, Marquês de São Vicente Street, Gávea, Rio de Janeiro, RJ 22451-900, Brazil.
Machine learning approaches often involve evaluating a wide range of models due to various available architectures. This standard strategy can lead to a lack of depth in exploring established methods. In this study, we concentrated our efforts on a single deep learning architecture type to assess whether a focused approach could enhance performance in fault diagnosis.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
School of Control Science and Engineering, Tiangong University, Tianjin, 300387, China.
With the advancement of artificial intelligence technology, more and more effective methods are being used to identify and classify Electroencephalography (EEG) signals to address challenges in healthcare and brain-computer interface fields. The applications and major achievements of Graph Convolution Network (GCN) techniques in EEG signal analysis are reviewed in this paper. Through an exhaustive search of the published literature, a module-by-module discussion is carried out for the first time to address the current research status of GCN.
View Article and Find Full Text PDFEur Radiol
January 2025
Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Objectives: We aimed to use artificial intelligence to accurately identify molecular subgroups of medulloblastoma (MB), predict clinical outcomes, and incorporate deep learning-based imaging features into the risk stratification.
Methods: The MRI features were extracted for molecular subgroups by a novel multi-parameter convolutional neural network (CNN) called Bi-ResNet-MB. Then, MR features were used to establish a prognosis model based on XGBoost.
Heliyon
January 2025
Information Technology Department, Technical College of Informatics-Akre, Akre University for Applied Sciences, Kurdistan Regain, Iraq.
Deep Learning (DL) has significantly contributed to the field of medical imaging in recent years, leading to advancements in disease diagnosis and treatment. In the case of Diabetic Retinopathy (DR), DL models have shown high efficacy in tasks such as classification, segmentation, detection, and prediction. However, DL model's opacity and complexity lead to errors in decision-making, particularly in complex cases, making it necessary to estimate the model's uncertainty in predictions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!