In this paper both deterministic and stochastic models are developed to explore the roles that antibiotic exposure and environmental contamination play in the spread of antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), in hospitals. Uncolonized patients without or with antibiotic exposure, colonized patients without or with antibiotic exposure, uncontaminated or contaminated healthcare workers, and free-living bacteria are included in the models. Under the assumption that there is no admission of the colonized patients, the basic reproduction number R is calculated. It is shown that when R < 1, the infection-free equilibrium is globally asymptotically stable; when R > 1, the infection is uniformly persistent. Numerical simulations and sensitivity analysis show that environmental cleaning is a critical intervention, and hospitals should use antibiotics properly and as little as possible. The rapid and efficient treatment of colonized patients, especially those with antibiotic exposure, is key in controlling MRSA infections. Screening and isolating colonized patients at admission, and improving compliance with hand hygiene are also important control strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2019181 | DOI Listing |
Front Allergy
December 2024
Respiratory Evaluation Sciences Program, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
Background: Infant antibiotic use is associated with increased risk of asthma. We examined the population impact of antibiotic exposure in the first year of life on the burden of pediatric asthma in British Columbia, Canada, using simulation modeling.
Methods: We performed a Bayesian meta-analysis of empirical studies to construct dose-response equations between antibiotic exposure in the first year of life and pediatric (<19 years of age) asthma.
Microbiome
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
Background: Antimicrobial resistance poses a significant threat to global health, with its spread intricately linked across human, animal, and environmental sectors. Revealing the antimicrobial resistance gene (ARG) flow among the One Health sectors is essential for better control of antimicrobial resistance.
Results: In this study, we investigated regional ARG transmission among humans, food, and the environment in Dengfeng, Henan Province, China by combining large-scale metagenomic sequencing with culturing of resistant bacterial isolates in 592 samples.
Clin Pharmacokinet
January 2025
Inria-Inserm COMPO Team, Centre Inria Sophia Antipolis-Méditerranée, CRCM, Inserm U1068-CNRS UMR7258-Aix-Marseille University UM105, Marseille, France.
Background: Cefotaxime is a widely prescribed cephalosporin antibiotic used to treat various infections. It is mainly eliminated unchanged by the kidney through tubular secretion and glomerular filtration. Therefore, a reduction of kidney function may increase exposure to the drug and induce toxic side effects.
View Article and Find Full Text PDFNat Commun
January 2025
Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
Tigecycline is a last-resort antibiotic to treat complicated infections caused by multidrug-resistant pathogens, while the emergence of plasmid-mediated tet(X) family severely compromises its clinical efficacy. Novel antimicrobial strategies not limited to new antibiotics in pharmaceutical pipeline are urgently needed. Herein, we reveal the metabolic disparities between tet(X)-negative and -positive E.
View Article and Find Full Text PDFBMJ Open
January 2025
Clinical Research Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
Introduction: Medicine quality can be influenced by environmental factors. In low- and middle-income countries (LMICs) with tropical climates, storage facilities of medicines in healthcare settings and homes may be suboptimal. However, knowledge of the effects of temperature and other climatic and environmental factors on the quality of medicines is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!