Synthesis, biological activity and conformational analysis of cyclic GRF analogs.

Int J Pept Protein Res

Physical Chemistry and Animal Science Research Dept., Roche Research Center, Hoffmann-La Roche Inc., Nutley, New Jersey.

Published: December 1988

A novel cyclic GRF analog, cyclo(Asp8-Lys12)-[Asp8,Ala15]-GRF(1-29)-NH2, i.e. cyclo8,12[Asp8,Ala15]-GRF(1-29)-NH2, was synthesized by the solid phase procedure and found to retain significant biological activity. Solid phase cyclization of Asp8 to Lys12 proceeded rapidly (approximately 2 h) using the BOP reagent. Substitution of Ala2 with D-Ala2 and/or NH2-terminal replacement (desNH2-Tyr1 or N-MeTyr1) in the cyclo8,12[Asp8,Ala15]-GRF(1-29)-NH2 system resulted in highly potent analogs that were also active in vivo. Conformational analysis (circular dichroism and molecular dynamics calculations based on NOE-derived distance constraints) demonstrated that cyclo8,12[Asp8,Ala15]-GRF(1-29)-NH2 contains a long alpha-helical segment even in aqueous solution. A series of cyclo8,12 stereoisomers containing D-Asp8 and/or D-Lys12 were prepared and also found to be highly potent and to retain significant alpha-helical conformation. The high biological activity of cyclo8,12[N-MeTyr1,D-Ala2,Asp8,Ala15]-GRF(1-29)- NH2 may be explained on the basis of retention of a preferred bioactive conformation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-3011.1988.tb01375.xDOI Listing

Publication Analysis

Top Keywords

biological activity
12
conformational analysis
8
cyclic grf
8
solid phase
8
highly potent
8
synthesis biological
4
activity conformational
4
analysis cyclic
4
grf analogs
4
analogs novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!