Despite the fact that solid dispersions are gaining momentum, the number of polymers that have been used as a carrier during the past 50 years is rather limited. Recently, the poly(2-alkyl-2-oxazoline) (PAOx) polymer class profiled itself as a versatile platform for a wide variety of applications in drug delivery, including their use as amorphous solid dispersion (ASD) carrier. The aim of this study was to investigate the potential of poly(2-ethyl-2-oxazoline) (PEtOx) by applying a benchmark approach with well-known, commercially available carriers (i.e. polyvinylpyrrolidone (PVP) K30, poly(vinylpyrrolidone-co-vinyl acetate) (PVP-VA) 64 and hydroxypropylmethylcellulose (HPMC)). For this purpose, itraconazole (ITC) and fenofibrate (FFB) were selected as poorly water-soluble model drugs. The four polymers were compared by establishing their supersaturation maintaining potential and by investigating their capability as carrier for ASDs with high drug loadings. Spray drying, as well as hot melt extrusion and cryo-milling were implemented as ASD manufacturing technologies for comparative evaluation. For each manufacturing technique, the formulations with the highest possible drug loadings were tested with respect to in vitro drug release kinetics. This study indicates that PEtOx is able to maintain supersaturation of the drugs to a similar extent as the commercially available polymers and that ASDs with comparable drug loadings can be manufactured. The results of the in vitro dissolution tests reveal that high drug release can be obtained for PEtOx formulations. Overall, proof-of-concept is provided for the potential of PEtOx for drug formulation purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2019.09.005 | DOI Listing |
J Biomater Sci Polym Ed
January 2025
Department of Microbiology, University of Central Punjab, Lahore, Pakistan.
Infected burn wounds present significant clinical challenges due to delayed healing and risk of infection, necessitating advanced treatments that offer both antimicrobial and regenerative properties. This study aimed to develop and evaluate multifunctional electrospun nanofiber films incorporating rhamnose (as an angiogenic agent) and therapeutic agents, namely fluticasone, mupirocin, ciprofloxacin, and silver sulfadiazine, for the enhanced healing of infected burn wounds. Nanofibers containing rhamnose, polyacrylonitrile, polyvinyl alcohol and therapeutic agents were fabricated electrospinning.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Microbiology and Pathogenic Biology, Air Force Military Medical University, Xi'an 710032, China. *Corresponding authors, E-mail:
Objective The prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains is exacerbating the global burden of tuberculosis (TB), highlighting the urgent need for new treatment strategies for TB. Methods The recombinant adenovirus vaccine expressing cyclic di-adenosine monophosphate (c-di-AMP) phosphodiesterase B (CnpB) (rAd-CnpB), was administered to normal mice via mucosal immunization, either alone or in combination with drug therapy, to treat Mtb respiratory infections in mice.Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of antibodies in serum and bronchoalveolar lavage fluid (BALF).
View Article and Find Full Text PDFNat Commun
January 2025
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
Hypoxic tumors present a significant challenge in cancer therapy due to their ability to adaptation in low-oxygen environments, which supports tumor survival and resistance to treatment. Enhanced mitophagy, the selective degradation of mitochondria by autophagy, is a crucial mechanism that helps sustain cellular homeostasis in hypoxic tumors. In this study, we develop an azocalix[4]arene-modified supramolecular albumin nanoparticle, that co-delivers hydroxychloroquine and a mitochondria-targeting photosensitizer, designed to induce cascaded oxidative stress by regulating mitophagy for the treatment of hypoxic tumors.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China. Electronic address:
Diabetic wounds often exhibit a chronic non-healing state due to the combined effects of multiple factors, including hyperglycemia, impaired angiogenesis, immune dysfunction, bacterial infection, and excessive oxidative stress. Despite the availability of various therapeutic strategies, effectively managing the complex and prolonged healing process of diabetic infected wounds remains challenging. In this study, we combined the natural antidiabetic drug lipoic acid (LA) with the RADA16-YIGSR (RY) peptide obtained through solid-phase synthesis, utilizing reversible hydrogen bonds and coordination bonds for binding.
View Article and Find Full Text PDFJ Control Release
January 2025
Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy; BioNanoMedicine Center NANOMIB, Università degli Studi di Milano-Bicocca, Italy. Electronic address:
Graphene oxide (GO) is an amphiphilic and versatile graphene-based nanomaterial that is extremely promising for targeted drug delivery, which aims to administer drugs in a spatially and temporally controlled manner. A typical GO nanocarrier features a polyethylene glycol coating and conjugation to an active targeting ligand. However, it is challenging to accurately model GO dots, because of their intrinsically complex and not unique structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!