Binge drinking is characterized by excessive alcohol consumption in a short period of time and is associated with a poor quality of life. Zebrafish are commonly used to investigate neurochemical, behavioral, and genetic parameters associated with ethanol (EtOH) exposure. However, few studies have used zebrafish as a model to investigate binge EtOH exposure. In order to elucidate the potential neurobehavioral impairments evoked by binge EtOH exposure in zebrafish, animals were immersed in 1.4% EtOH for 30 min three consecutive times with intervals of one week. Neurobehavioral parameters were analyzed immediately following the third exposure, as well as 2 and 9 days later. Brain choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities were reduced 9 days after the treatment. Thiobarbituric acid-reactive species and dichlorodihydrofluorescein levels were increased immediately after the treatment, but both returned to normal levels 2 days after the treatment. Catalase and glutathione reductase were impaired 2 and 9 days after the treatment. No alteration was observed in superoxide dismutase and glutathione peroxidase activities. EtOH treatment did not alter brain expression of inflammatory genes such as il-1β, il-10, and tnf-α. Zebrafish displayed anxiolytic-like behavior immediately after the last exposure, though there was no behavioral alteration observed 9 days after the treatment. Therefore, binge EtOH exposure in zebrafish leads to long lasting brain cholinergic alteration, probably related to oxidative stress immediately after the exposure, which is independent of classical inflammatory markers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbb.2019.172790 | DOI Listing |
Access Microbiol
January 2025
Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
Antiseptics have been used for infection control against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Ethanol (EtOH) was found to be effective against SARS-CoV-2, while chlorhexidine gluconate (CHG) was less effective. Therefore, virucidal activity may differ between different classes of antiseptic agents.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo 05508-000 São Paulo SP Brazil
Alcohol Clin Exp Res (Hoboken)
January 2025
Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA.
Background: During the coronavirus disease 2019 (COVID-19) pandemic, there was a marked increase in alcohol consumption. COVID-19 superimposed on underlying liver disease notably worsens the outcome of many forms of liver injury. The goal of a current pilot study was to test the dual exposure of alcohol and COVID-19 infection in an experimental animal model of alcohol-associated liver disease (ALD).
View Article and Find Full Text PDFNeuropharmacology
December 2024
Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton, NY, 13902, United States. Electronic address:
Individuals with prenatal alcohol exposure (PAE) are at a higher risk for developing alcohol use disorder (AUD). Using a rat model of moderate PAE (mPAE) on gestational day 12 (G12; ∼2nd trimesters in humans), a critical period for amygdala development, we have shown disruptions in medial central amygdala (CeM) function, an important brain region associated with the development of AUD. In addition to this, acute ethanol (EtOH) increases GABA transmission in the CeM of rodents in a sex-dependent manner, a mechanism that potentially contributes to alcohol misuse.
View Article and Find Full Text PDFAlcohol Clin Exp Res (Hoboken)
December 2024
Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
Background: In rodents, third-trimester-equivalent alcohol exposure (TTAE) produces significant deficits in hippocampal-dependent memory processes such as contextual fear conditioning (CFC). The present study sought to characterize changes in both behavior and Fos neurons following CFC in ethanol (EtOH)-treated versus saline-treated mice using TRAP2:Ai14 mice that permanently label Fos neurons following a tamoxifen injection. We hypothesized that TTAE would produce long-lasting disruptions to the networks engaged following CFC with a particular emphasis on the limbic memory system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!