Near-Infrared Spectroscopy to Determine Residual Moisture in Freeze-Dried Products: Model Generation by Statistical Design of Experiments.

J Pharm Sci

Pharmaceutical Development & Supplies Biologics Europe, F. Hoffmann-La Roche Ltd., Grenzacherstrasse, CH-4070 Basel, Switzerland. Electronic address:

Published: January 2020

Moisture content (MC) is a critical quality attribute of lyophilized biopharmaceuticals and can be determined by near-infrared (NIR) spectroscopy as nondestructive alternative to Karl-Fischer titration. In this study, we create NIR models to determine MC in mAb lyophilisates by use of statistical design of experiments (DoE) and multivariate data analysis. We varied the composition of the formulation as well as lyophilization parameters covering a large range of representative conditions, which is commonly referred to as "robustness testing" according to quality-by-design concepts. We applied principles of chemometrics with partial least squares and principal component analysis. The NIR model excluded samples with complete collapse and MC > 6%. The 2 main components in the principal component analysis were MC (91%) and protein:sugar ratio (6%). The third component amounted to only 3% and remained unspecified but may include variations in process parameters and cake structure. In contrast to traditional approaches for NIR model creation, the DoE-based model can be used to monitor MC during drug product development work including scale-up, and transfer without the need to update the NIR model if protein:sugar ratio and MC stays within the tested limits and cake structure remains macroscopically intact. The use of the DoE approach and multivariate data analysis ensures product consistency and improves understanding of the manufacturing process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2019.08.028DOI Listing

Publication Analysis

Top Keywords

nir model
12
statistical design
8
design experiments
8
multivariate data
8
data analysis
8
principal component
8
component analysis
8
proteinsugar ratio
8
cake structure
8
model
5

Similar Publications

In this study, we explore an enhancement to the U-Net architecture by integrating SK-ResNeXt as the encoder for Land Cover Classification (LCC) tasks using Multispectral Imaging (MSI). SK-ResNeXt introduces cardinality and adaptive kernel sizes, allowing U-Net to better capture multi-scale features and adjust more effectively to variations in spatial resolution, thereby enhancing the model's ability to segment complex land cover types. We evaluate this approach using the Five-Billion-Pixels dataset, composed of 150 large-scale RGB-NIR images and over 5 billion labeled pixels across 24 categories.

View Article and Find Full Text PDF

Tissue factor targeted near-infrared photoimmunotherapy: a versatile therapeutic approach for malignancies.

Cancer Immunol Immunother

January 2025

Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA.

Tissue factor (TF) is a cell surface protein that plays a role in blood clotting but is also commonly expressed in many cancers. Recent research implicated TF in cancer proliferation, metastasis, angiogenesis, and immune escape. Therefore, TF can be considered a viable therapeutic target against cancer.

View Article and Find Full Text PDF

Background: An imbalance between the production and clearance of amyloid beta (Aß) has emerged as a major cause of sporadic Alzheimer's disease (AD). Retinal wholemount studies can identify cell-specific involvement in Aß clearance mechanisms which cannot be accomplished in the brain ex vivo.

Methods: Eye cross-sections of double transgenic (Tg, APP-PS1) and non-carrier sibling female mice (n = 16, 4 per group) at 3- and 9- month ages were probed with antibodies 6E10 (Aβ1-16 amino-acid residues, soluble and insoluble species), ionized calcium-binding adapter molecule 1 (IBA1, microglia/macrophage), glial fibrillary acidic protein (GFAP, astrocytes), glutamine synthetase (GS, Müller cells) and aquaporin-4 (AQP4, membrane water channel) using immunofluorescence.

View Article and Find Full Text PDF

Organic-inorganic hybrid lead halides have been extensively studied due to their outstanding physical properties and diverse compositional elements. However, environmentally benign tin-based hybrids with remarkable flexibility in bandgap engineering have been less investigated. Herein, we report the successful design and synthesis of three tin-based organic-inorganic hybrid compounds through precise molecular modification: [Me(i-Pr)N][SnBr] (), [MeCHCl(i-Pr)N][SnBr] (), and [MeCHBr(i-Pr-Br)N][SnBr] ().

View Article and Find Full Text PDF
Article Synopsis
  • Chemiluminescence (CL) is a chemical reaction that produces light without needing external energy sources, offering advantages in sensitivity and imaging.
  • Researchers developed a series of unimolecular probes that emit light in the near-infrared (NIR-II) range for better imaging, specifically targeting wavelengths up to 1060 nm.
  • The study successfully demonstrated these probes for real-time detection of superoxide anions in a mouse model of liver injury, highlighting their potential for advanced bioimaging and disease diagnosis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!