Protein dynamics are crucial for the mechanistically ordered enzymes to bind to their substrate in the correct sequence and perform catalysis. Factor-inhibiting HIF-1 (FIH) is a nonheme Fe(II) α-ketoglutarate-dependent oxygenase that is a key hypoxia (low ) sensor in humans. As these hypoxia-sensing enzymes follow a multistep chemical mechanism consuming α-ketoglutarate, a protein substrate that is hydroxylated, and O, understanding protein flexibility and the order of substrate binding may aid in the development of strategies for selective targeting. The primary substrate of FIH is the C-terminal transactivation domain (CTAD) of hypoxia-inducible factor 1α (HIF) that is hydroxylated on the side chain of Asn803. We assessed changes in protein flexibility connected to metal and αKG binding, finding that (M+αKG) binding significantly stabilized the cupin barrel core of FIH as evidenced by enhanced thermal stability and decreased protein dynamics as assessed by global amide hydrogen/deuterium exchange mass spectrometry and limited proteolysis. Confirming predictions of the consensus mechanism, (M+αKG) increased the affinity of FIH for CTAD as measured by titrations monitoring intrinsic tryptophan fluorescence. The decreased protein dynamics caused by (M+αKG) enforces a sequentially ordered substrate binding sequence in which αKG binds before CTAD, suggesting that selective inhibition may require inhibitors that target the binding sites of both αKG and the prime substrate. A consequence of the correlation between dynamics and αKG binding is that all relevant ligands must be included in binding-based inhibitor screens, as shown by testing permutations of M, αKG, and inhibitor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003530PMC
http://dx.doi.org/10.1021/acs.biochem.9b00619DOI Listing

Publication Analysis

Top Keywords

protein flexibility
12
substrate binding
12
protein dynamics
12
α-ketoglutarate-dependent oxygenase
8
factor-inhibiting hif-1
8
αkg binding
8
decreased protein
8
protein
7
substrate
7
binding
7

Similar Publications

Protein mycoloylation is a newly characterized post-translational modification (PTM) specifically found in Corynebacteriales, an order of bacteria that includes numerous human pathogens. Their envelope is composed of a unique outer membrane, the so-called mycomembrane made of very-long chain fatty acids, named mycolic acids. Recently, some mycomembrane proteins including PorA have been unambiguously shown to be covalently modified with mycolic acids in the model organism Corynebacterium glutamicum by a mechanism that relies on the mycoloyltransferase MytC.

View Article and Find Full Text PDF

This study investigates camel milk protein structural dynamics during digestion using Fourier Transform Infrared (FTIR) spectroscopy and Two-Dimensional Infrared (2D-IR) homo-correlation and hetero-correlation analysis. The synchronous 2DIR homo-correlation map reveals that NH bending and C-N stretching vibrations (amide II) are sensitive to digestion, indicating significant impacts on secondary structures. The asynchronous 2DIR homo-correlation indicates a stepwise process, where initial disruptions in NH interactions precede changes in CO stretching vibrations (amide I), highlighting the sequence of structural alterations during protein unfolding and degradation.

View Article and Find Full Text PDF

Solvent-Environment Dependence of the Excess Chemical Potential and Its Computation Scheme Formulated through Error Minimization.

J Chem Theory Comput

January 2025

Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.

Solvent environment may significantly affect the equilibria involving flexible solute species, such as proteins and polymers. In the present work, a computation scheme is formulated for the change in the excess chemical potential of a flexible solute molecule upon variation of the solvent condition. The formulation adopts the scheme of error minimization in parallel to the method of Bennett acceptance ratio, and an exact expression is presented that provides the change in the excess chemical potential from solvation free energies computed in two solvent conditions of interest.

View Article and Find Full Text PDF

The success of introduced species often relies on flexible traits, including immune system traits. While theories predict non-natives will have weak defences due to decreased parasite pressure, effective parasite surveillance remains crucial, as infection risk is rarely zero and the evolutionary novelty of infection is elevated in non-native areas. This study examines the relationship between parasite surveillance and cytokine responsiveness in native and non-native house sparrows, hypothesizing that non-natives maintain high pathogen surveillance while avoiding costly inflammation.

View Article and Find Full Text PDF

The Cry1Fa insecticidal protein from (Bt) was expressed on the surface of (Bs) spores to create transgenic Bs spores referred to as Spore-Cry1Fa. Cry1Fa, along with its leader sequence, was connected to the carboxyl end of a Bs spore outercoat protein, CotC, through a flexible linker. The Arg-27 residue of the Cry1Fa protein was mutated to Leu to prevent detachment from the spores due to protease digestion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!