Advancement of the next generation of air-breathing propulsion systems will require developing novel high-energy fuels by adding high energy-density materials such as aluminum to enhance fuel performance. We present original measurements, obtained by exploiting the ultrasonic levitation technique, to elucidate the oxidation of -tetrahydrodicyclopentadiene (JP-10; CH) droplets doped with 80 nm-diameter aluminum nanoparticles (Al NPs) in an oxygen-argon atmosphere. The oxidation was monitored by Raman, Fourier-transform infrared (FTIR), and ultraviolet-visible (UV-Vis) spectroscopies together with high-speed optical and IR thermal-imaging cameras. The addition of 0.5 wt % of the Al NPs was critical for ignition under our experimental conditions occurring at 540 ± 40 K. Diatomic radicals such as OH, CH, C, and AlO were observed during the oxidation of the doped JP-10 droplets, thus providing insight into the reactive intermediates. The influence of the Al NPs on the reaction mechanism is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.9b02241 | DOI Listing |
Nanomaterials (Basel)
November 2024
Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia.
This study investigates the growth of gallium arsenide nanowires, using lead as a catalyst. Typically, nanowires are grown through the vapor-solid-liquid mechanism, where a key factor is the reduction in the nucleation barrier beneath the catalyst droplet. Arsenic exhibits limited solubility in conventional catalysts; however, this research explores an alternative scenario in which lead serves as a solvent for arsenic, while gallium and lead are immiscible liquids.
View Article and Find Full Text PDFAnal Sci
November 2024
Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Medical Faculty, RWTH University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
Calibrations in LA-ICP-MS are typically very time-consuming and complex, as they need to be matched to the samples being measured and sectioned on a microtome. Alternatively, gelatin can be in droplet form or as a section, which is a more recent development. In this study, we report on investigations where hot multi-element gelatin solutions are placed in a linear fashion on microscopic slides to conduct comparative statistical observations between doped tissue homogenates from the liver and lung.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States.
ACS Nano
October 2024
Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
Extracellular matrix (ECM)-mimicking microsized cell carriers featuring a semi-isolated chamber facilitate the study of cellular heterogeneity as well as intercellular communication. However, the semiopen shaping of the designated gel mixture remains unattainable with current methods. We report an oil-phase freeze-shrink self-molding mechanism for generating size- and composition-tunable cradle-shaped microgels (microcradles) from water-in-oil droplets.
View Article and Find Full Text PDFACS Nano
September 2024
Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
The activation of cellular ferroptosis is promising in tumor therapy. However, ferroptosis is parallelly inhibited by antiferroptotic substances, including glutathione peroxidase 4 (GPX4), dihydroorotate dehydrogenase (DHODH), and ferroptosis suppressor protein 1 (FSP1). Thus, it is highly desirable, yet challenging, to simultaneously suppress these three antiferroptotic substances for activating ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!