Anticounterfeiting is a vitally important issue in modern society. At present, the most commonly used luminescent anticounterfeiting technique is based on static photoluminescence (PL), which is easily counterfeited by certain substitutes. In this work, we report for the first time a dynamic PL material, NaCaGeO:Tb. Irradiated by a portable ultraviolet (254 nm) lamp, the PL color of the material due to Tb changes from the initial red to yellow and, finally, green. The investigation reveals that the dynamic PL is due to the presence of appropriate traps and the cross-relaxation effect of Tb in NaCaGeO. By employing this unique dynamic PL material, high-level dynamic luminescent anticounterfeiting and encryption devices can be fabricated. The dynamic PL features of the devices are easily detected using a cheap portable lamp, and at present, it is impossible for the features to be faked by any substitutes. In a virtual military scenario, the results demonstrate that the encryption device is safe and that a spy will be detected. Accordingly, this dynamic PL material could inspire more ingenious security designs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b10870 | DOI Listing |
Disabil Rehabil
January 2025
Sydney School of Health Sciences, Faculty of Medicine & Health, The University of Sydney, Sydney, Australia.
Purpose: To investigate potential mechanisms of a digital rehabilitation intervention associated with improved mobility among adults undertaking rehabilitation.
Materials And Methods: Causal mediation analysis of the AMOUNT trial (ACTRN12614000936628). Participants were randomised to digitally-enabled rehabilitation (virtual reality video games, activity monitors, and handheld computer devices prescribed by a physiotherapist) and usual care or usual care alone.
Pharmaceutics
January 2025
Department of Mathematical and Physical Sciences, Catholic University of Temuco, Temuco 4813302, Chile.
: A previous study investigated the in vitro release of methylene blue (MB), a widely used cationic dye in biomedical applications, from nanocellulose/nanoporous silicon (NC/nPSi) composites under conditions simulating body fluids. The results showed that MB release rates varied significantly with the nPSi concentration in the composite, highlighting its potential for controlled drug delivery. To further analyze the relationship between diffusion dynamics and the MB concentration, this study developed a finite element (FE) method to solve Fick's equations governing the drug delivery system.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan.
Orally administered sorafenib has shown limited improvement in overall survival for non-small-cell lung cancer patients, likely due to poor pharmacokinetics and adverse effects, including gastrointestinal toxicity. To address these issues, we developed silica-containing antioxidant nanoparticles (siRNP) as a carrier to enhance the therapeutic efficacy of lipophilic sorafenib. Sorafenib was loaded into siRNP via dialysis (sora@siRNP).
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
Salt stress is an important factor affecting the growth and development of rice, and prohexadione calcium (Pro-Ca) plays an important role in alleviating rice salt stress and improving rice yield. However, there are few studies on how Pro-Ca improves rice yield under salt stress by regulating the source-sink metabolism. In this study, we used Guanghong 3 (salt-tolerant variety) and Huanghuazhan (salt-sensitive variety) as experimental materials to investigate the dynamic changes in the synthesis and partitioning of nonstructural carbohydrates among source-sink, the dynamic changes in related enzyme activities, the effects of the source-sink metabolism on yield in rice under salt stress and the effect of Pro-Ca during the filling period.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Horticulture, National Chung Hsing University, Taichung City 40227, Taiwan.
Trees are complex and dynamic living structures, where structural stability is essential for survival and for public safety in urban environments. Tree forks, as structural junctions, are key to tree integrity but are prone to failure under stress. The specific mechanical contributions of their internal conical structures remain largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!