Amyloid fibrils are rigid β-pleated protein aggregates that are connected with series of harmful diseases and at the same time are promising as base for novel nanomaterials. Thus, design of compounds able to inhibit or redirect those aggregates formation is important both for the biomedical aims and for nanotechnology applications. Here, we studied the effect of tetraphenylporphyrins (metal free, their Cu and Pd complexes, and those functionalized by carboxy and amino groups on periphery) on insulin amyloid self-assembling. The strongest impact on insulin aggregation was demonstrated by a metal-free porphyrin bearing four carboxy groups. This compound strongly suppresses insulin aggregation (about 88% reduction in amyloid-sensitive probe emission) inducing formation of fibrils with the length close to this of free insulin (1.7 ± 0.6 μm as compared with 1.4 ± 0.4 μm, respectively) with an essentially reduced tendency to lateral aggregation. Contrarily, the presence of tetraphenylporphyrin containing four amino groups only slightly affects fibrils' morphology and makes weaker impact on insulin aggregation yield (about 44% reduction). This is explained by the ability of aromatic carboxy groups of 5,10,15,20-(tetra-4-carboxyphenyl)porphyrin to interact with complementary protein-binding groups and thus stabilize the supramolecular complex. For 5,10,15,20-(tetra-4-aminophenyl)porphyrin, full protonation takes place in acidic medium of protein aggregation reaction; this results in the high positive charge of TPPN4 (equal or close to +6) and hence higher contribution of coulombic repulsion to interaction of TPPN4 with insulin. One more possible mechanism of the lower inhibition effect of TPPN4 as compared with TPPC4 could be the more restricted possibility of the former as compared with the latter to form H bonds with insulin groups. It was also shown that metal-free, Pd-containing, and Cu-containing tetraphenylporphyrins without peripheral substituents make almost the same impact on the protein self-assembling. We suppose this to be due to coordination saturation of these metal atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.2811DOI Listing

Publication Analysis

Top Keywords

insulin aggregation
12
insulin
8
insulin amyloid
8
amino groups
8
impact insulin
8
carboxy groups
8
aggregation
6
groups
6
study tetraphenylporphyrins
4
tetraphenylporphyrins modifiers
4

Similar Publications

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

UIPS, CHANDIGARH, Punjab, India.

Background: Alzheimer's disease is a brain disorder that causes neurodegeneration and is linked with insulin resistance at molecular, clinical, and demographic levels. Defective insulin signaling promotes Aβ aggregation and accelerates Aβ formation in the brain leading to Type III diabetes.

Objective: The objective of this research project is to demonstrate a linkage if any between the risk of developing Alzheimer's disease and insulin resistance.

View Article and Find Full Text PDF

Insulin amyloid morphology is encoded in H-bonds and electrostatics interactions ruling protein phase separation.

J Colloid Interface Sci

December 2024

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark. Electronic address:

Ion-protein interactions regulate biological processes and are the basis of key strategies of modulating protein phase diagrams and stability in drug development. Here, we report the mechanisms by which H-bonds and electrostatic interactions in ion-protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering, circular dichroism and atomistic molecular dynamics (MD) simulations, we found that anions specifically interacting with insulin induced phase separation by neutralising the protein charge and forming H-bond bridges between insulin molecules.

View Article and Find Full Text PDF

Background: Existing cohort studies show no association between insulin use and cancers of the digestive system, while numerous meta-analyses suggest that insulin use increases the risk of digestive system tumours. This study uses two-sample Mendelian randomization (MR) to further investigate the causal relationship between the two.

Methods: We selected single nucleotide polymorphisms (SNPs) strongly associated with insulin use as instrumental variables and used aggregated statistics on digestive system neoplasms as the outcome event.

View Article and Find Full Text PDF

Background/objectives: The associations between low birth weight (LBW) and the aggregation of metabolic risk factors (MRF) in youth remain ambiguous. Thus, this study analysed the interrelationship among MRF, LBW, and behavioural factors in adolescents.

Methods: The sample of the present cross-sectional study comprised 491 youth (229 males, 262 females) aged 14-17 years.

View Article and Find Full Text PDF

Metabolic Dysfunction in Parkinson's Disease: Unraveling the Glucose-Lipid Connection.

Biomedicines

December 2024

Research Unit of Psychiatry, Department of Psychiatry, Odense, Region of Southern Denmark, University Hospital of Southern Denmark, 5000 Odense, Denmark.

Despite many years of research into the complex neurobiology of Parkinson's disease, the precise aetiology cannot be pinpointed down to one causative agent but rather a multitude of mechanisms. Current treatment options can alleviate symptomsbut only slightly slow down the progression and not cure the disease and its underlying causes. Factors that play a role in causing the debilitating neurodegenerative psycho-motoric symptoms include genetic alterations, oxidative stress, neuroinflammation, general inflammation, neurotoxins, iron toxicity, environmental influences, and mitochondrial dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!