The crystallization of amorphous sucrose can be problematic in food products. This study explored how emulsifiers (a range of sucrose esters, polysorbates, and soy lecithin) impact the moisture sorption and crystallization of amorphous sucrose lyophiles. Solutions containing sucrose with and without emulsifiers were lyophilized, stored in desiccators, and analyzed by X-ray diffraction, infrared spectroscopy, and polarized light microscopy over time. Moisture sorption techniques, Karl Fischer titration, and differential scanning calorimetry were also used. Different emulsifiers had varying impacts on sucrose crystallization tendencies. Polysorbates enhanced sucrose crystallization, decreasing both the RH and time at which sucrose crystallized. These lyophiles did not collapse upon crystallization, unlike all other samples, indicating the likelihood of variations in nucleation sites and crystal growth. All other emulsifiers stabilized amorphous sucrose by up to a factor of 7x, even in the presence of increased water absorbed and independent of glass transition temperatures, indicating emulsifier structure governed sucrose crystallization tendencies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722256 | PMC |
http://dx.doi.org/10.1016/j.fochx.2019.100050 | DOI Listing |
AAPS J
January 2025
Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
Freeze drying is one of the common methods to extend the long-term stability of biologicals. Biological products in solid form have the advantages of convenient transportation and stable long-term storage. However, long reconstitution time and extensive visible bubbles are frequently generated during the reconstitution process for many freeze-dried protein formulations, which can potentially affect the management efficiency of staff, patient compliance, and product quality.
View Article and Find Full Text PDFNutrients
December 2024
Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico.
Background/objective: In recent studies, it has been shown that dietary bioactive compounds can produce health benefits; however, it is not known whether an improvement in solubility can enhance their biological effects. Thus, the aim of this work was to study whether co-amorphous (CoA) naringenin or fisetin with enhanced solubility modify glucose and lipid metabolism, thermogenic capacity and gut microbiota in mice fed a high-fat, high-sucrose (HFSD) diet.
Methods: Mice were fed with an HFSD with or without CoA-naringenin or CoA-fisetin for 3 months.
ACS Omega
November 2024
Department of Biomedical Science, Malmö University, SE-205 06 Malmö, Sweden.
Binary mixtures of sucrose and trehalose in water were investigated using classical molecular dynamics (MD) simulations and free energy calculations. By classical MD simulations, the behavior of sugars was studied across the entire range of concentrations, from 0 to 100 wt % of water. Sugar-sugar and sugar-water affinities in diluted systems were in focus when using umbrella sampling and well-tempered metadynamics calculations.
View Article and Find Full Text PDFMol Pharm
December 2024
Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, Munich 81377, Germany.
Lyophilization is widely used to ensure the stability of protein drugs by minimizing chemical and physical degradation in the dry solid state. To this end, proteins are typically formulated with sugars that form an amorphous immobilizing matrix and stabilize hydrogen bonds replacing water molecules. The optimal amount of sugar required and protein stability at low excipient-to-protein molar ratios are not well understood.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil; Federal Rural University of Pernambuco, Street Dom Manuel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil. Electronic address:
The aim of this study was to select the best exopolysaccharide (EPS) producer among the Enterococcus strains to optimize, characterize, and evaluate its biological properties. Among the eleven strains, Enterococcus faecium KT990028 was selected, and the production conditions were optimized: 16.3 % (w/v) sucrose, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!