Various nanostructured amorphous silicas [fumed silicas such as crude (A-300), hydro-compacted (cA-300, TS 100), and precipitated silica Syloid 244] were modified by different polydimethylsiloxanes such as PDMS5, PDMS100, PDMS200, PDMS1000, and PDMS12500 (the label numbers show the viscosity (η) values) using dimethyl carbonate (DMC) as a siloxane-bond-breaking reagent. In addition, hexamethyldisilazane was used to modify fumed silica cA-300. The nanocomposites were characterized using microscopy, infrared spectroscopy, thermodesorption, nitrogen adsorption-desorption, solid-state NMR spectroscopy, small-angle X-ray scattering, and zeta-potential methods. It was found that the morphological, textural, and structural characteristics of silicas grafted with PDMS depend strongly not only on the type and content of the polymers used but also on the organization of nonporous nanoparticles (NPNP) in secondary structures (aggregates of NPNP and agglomerated aggregates, ANPNP), as well on the reaction temperature ( ). Specifically, we determined that ANPNP with a macro/mesoporous character are favorable for the effective modification of the silicas studied with short polymers and no DMC addition but at higher temperatures or for a longer silicone polymer with the presence of DMC and at lower temperatures. In particular, the PDMS/DMC-modified silicas are of great interest from a practical point of view because they remain in a dispersed state with no strong compaction of the secondary structures after modification, and this corresponds to a better distribution of the modified nanoparticles in polymeric or other matrices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6714511PMC
http://dx.doi.org/10.1021/acsomega.9b01508DOI Listing

Publication Analysis

Top Keywords

nanostructured amorphous
8
amorphous silicas
8
secondary structures
8
silicas
6
silicas hydrophobized
4
hydrophobized pathways
4
pathways nanostructured
4
silicas [fumed
4
[fumed silicas
4
silicas crude
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!