Absorbers suppress reflection and scattering of an incident wave by dissipating its energy into heat. As material absorption goes to zero, the energy impinging on an object is necessarily transmitted or scattered away. Specific forms of temporal modulation of the impinging signal can suppress wave scattering and transmission in the transient regime, mimicking the response of a perfect absorber without relying on material loss. This virtual absorption can store energy with large efficiency in a lossless material and then release it on demand. Here, we extend this concept to elastodynamics and experimentally show that longitudinal motion can be perfectly absorbed using a lossless elastic cavity. This energy is then released symmetrically or asymmetrically by controlling the relative phase of the impinging signals. Our work opens previously unexplored pathways for elastodynamic wave control and energy storage, which may be translated to other phononic and photonic systems of technological relevance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6716958 | PMC |
http://dx.doi.org/10.1126/sciadv.aaw3255 | DOI Listing |
Pharmaceutics
December 2024
PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal.
Background: Salbutamol, a short-acting β-agonist used in asthma treatment, is available in multiple formulations, including inhalers, nebulizers, oral tablets, and intravenous, intramuscular, and subcutaneous routes. Each formulation exhibits distinct pharmacokinetic (PK) and pharmacodynamic (PD) profiles, influencing therapeutic outcomes and adverse effects. Although asthma management predominantly relies on inhaled salbutamol, understanding how these formulations interact with patient-specific characteristics could improve personalized medicine approaches, potentially uncovering the therapeutic benefits of alternative formulations for an individual patient.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
School of Biotechnology, Jiangnan University, Wuxi 214122, China.
The exploration of drug targets has always been a priority in new drug research, and this work is even more essential for natural active compounds. is a traditional Tibetan medicine with excellent antioxidant properties. In this study, an alkaloid, --coumaroyl-'-caffeoylputrescine (PCC), was first isolated from the plant, , with a DPPH scavenging rate of 0.
View Article and Find Full Text PDFClin Ther
January 2025
University Medical Center Groningen and University of Groningen, Groningen, The Netherlands.
Purpose: Posaconazole is a broad-spectrum antifungal for treating and preventing invasive fungal infections (IFIs) in immunocompromised individuals, including children as young as 2 years. Available in delayed-release (DR) oral suspension, intravenous formulation, and older immediate-release (IR) formulation (off-label in younger children), dosing harmonization across age groups and formulations remains inconsistent. This inconsistency arises from the unique physiology of young children and posaconazole's pH-dependent absorption.
View Article and Find Full Text PDFEnviron Int
January 2025
State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, China.
Despite the ubiquity and complexity of atmospheric polycyclic aromatic compounds (PACs), many of these compounds are largely unknown and lack sufficient toxicity data for comprehensive risk assessments. In this study, nontarget screening assisted by in-house and self-developed spectra databases was, therefore, employed to identify PACs in atmospheric particulate matter collected from multiple outdoor settings. Additionally, absorption, distribution, metabolism, excretion, and toxicity properties were evaluated to indicate PAC's overall abilities to cause adverse outcomes and incorporated into a novel health risk assessment model to assess their inhalation risks.
View Article and Find Full Text PDFCurr Drug Discov Technol
December 2024
Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpViharSector-3, M-B Road, New Delhi, 110017, India.
Background: Computer-Aided Drug Design (CADD) approaches are essential in the drug discovery and development process. Both academic institutions and pharmaceutical and biotechnology corporations utilize them to enhance the efficacy of bioactive compounds.
Objective: This study aims to entice researchers by investigating the benefits of Computer-Aided Drug and Design (CADD) and its fundamental principles.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!