A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of radon on miR-34a-induced apoptosis in human bronchial epithelial BEAS-2B cells. | LitMetric

Radon exposure is known to be the second most frequent cause followed by tobacco exposure for lung cancer development. In lung cancer development, microRNAs (miRNAs) play an important role in regulating various target genes associated with this disease. It is well-established that apoptosis is involved in the elimination of cancer cells. However, the mechanisms underlying chronic radon exposure induced miRNAs regulation attributed to result in carcinogenesis and subsequent activation of apoptosis is not completely understood. The aim of this study was thus to examine chronic low level radon exposure on lung miRNAs as a model for carcinogenesis induction and subsequent activation of apoptosis using human bronchial epithelial BEAS-2B cells. Quantitative real-time PCR (qRT-PCR) and flow cytometry were used to determine the miR-34a gene expression and apoptotic rate in BEAS-2B cells. Data demonstrated that chronic radon exposure up-regulated the expressions of miR-34a and enhanced cellular apoptosis in a time-dependent manner. Western blot analysis demonstrated that overexpression of the gene miR-34a enhanced apoptotic rate and elevated proapoptotic Bax protein expression accompanied by decreased protein expressions of antiapoptotic Bcl-2 and PARP-1. It is noteworthy that the apoptotic rate was elevated in BEAS-2B cells transfected with mi-R34a mimic but reduced in mi-R34a inhibitor-transfected cells. Evidence thus indicates that chronic exposure to radon produced up-regulation of miR-34a gene which subsequently enhanced apoptosis in BEAS-2B cells. The observed consequences following chronic radon exposure leading to carcinogenesis appear to involve activation of miR-34a gene.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15287394.2019.1665350DOI Listing

Publication Analysis

Top Keywords

beas-2b cells
20
radon exposure
20
chronic radon
12
mir-34a gene
12
apoptotic rate
12
apoptosis human
8
human bronchial
8
bronchial epithelial
8
epithelial beas-2b
8
exposure lung
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!