Facet engineering of anatase TiO by controlling the {001} exposure ratio has been the focus of numerous investigations to optimize photocatalytic activity. In particular, an introduction of fluoride ions during the crystal growth has been demonstrated to be very effective and decisive in realizing the facet exposure of the crystals. However, a key role of fluoride ions in stabilizing {001} exposure and improving subsequent photocatalytic activity of anatase TiO remains unclear up to date. Herein, a controlled thickness of anatase TiO nanosheets has been realized by introducing different amounts of ethanol into a HF acid-assisted hydrothermal reaction. The thinnest nanosheets with a thickness of ∼2.9 nm were evaluated to have the highest H production rate of 41.04 mmol·h·g under ultraviolet light irradiation, and the corresponding quantum efficiency was determined to be 41.6% (λ = 365 nm). Moreover, it is proved for the first time that fluoride ions are bonded with Ti vacancies on {001} facets, and such defects are crucial for stabilizing the ultrathin nanosheets and improving their electron-hole separation, therefore leading to a highly efficient photocatalytic activity. The findings offer an opportunity to engineer facets and functionality of anatase TiO by controlling surface defects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b11233DOI Listing

Publication Analysis

Top Keywords

anatase tio
20
photocatalytic activity
12
fluoride ions
12
tio nanosheets
8
tio controlling
8
{001} exposure
8
anatase
5
tio
5
surface defect-controlled
4
defect-controlled growth
4

Similar Publications

Antibiotic residues have become serious health concerns due to the development of antibiotic-resistant bacteria. The treatment of antibiotic pollutants in wastewater is necessary for reducing the issue of antibiotic resistance. In this work, the metal oxide photocatalyst titanium dioxide (TiO) was evaluated for the removal of the tetracycline antibiotic (TC-A) and the deactivation of bacteria (E-B) from wastewater.

View Article and Find Full Text PDF

This research investigates the microbial inactivation potential of ternary TiO-CuO-chitosan nanocomposites (TCC NCs) applied as surface coatings on cowhide leather. Initially, bare TiO nanoparticles (NPs) and binary TiO-CuO (TC) NCs, with varying CuO NPs content, were prepared using an sol-gel method. These binary TC NCs were then modified with chitosan at varying weight percentages (2%, 4%, 6%, and 8%).

View Article and Find Full Text PDF

Assessing the impact of TiO nanomaterials on intestinal cells: new evidence for epithelial translocation and potential pro-inflammatory effects.

Toxicology

January 2025

National Institute of Health Doutor Ricardo Jorge, I.P (INSA), Department of Human Genetics, Lisbon, Portugal; (b)Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal. Electronic address:

Understanding the potential impact of nanomaterials (NMs) on human health requires further investigation into the organ-specific nano-bio interplay at the cellular and molecular levels. We showed increased chromosomal damage in intestinal cells exposed to some of in vitro digested Titanium dioxide (TiO) NMs. The present study aimed to explore possible mechanisms linked to the uptake, epithelial barrier integrity, cellular trafficking, as well as activation of pro-inflammatory pathways, after exposure to three TiO-NMs (NM-102, NM-103, and NM-105).

View Article and Find Full Text PDF

Synergistic enhancement in ultra-trace thallium(I) removal using the titanium dioxide/biochar composite.

J Environ Manage

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China. Electronic address:

Thallium (Tl), recognized for its high toxicity, is subject to stringent international regulations regarding its permissible concentrations at ultra-trace levels. In this study, titanium dioxide (TiO) was integrated with potassium (K)-rich biochar to create TiO/biochar (TiO/BC) composites for synergistic enhancement in ultra-trace Tl(I) removal, focusing on achieving concentration below the rigorous local threshold of 0.1 μg/L for drinking water.

View Article and Find Full Text PDF

This study presents a novel optoporation technique using a titanium-coated TiO microstructure (TMS) device activated by an infrared diode laser for highly efficient intracellular delivery. The TMS device, fabricated with 120 nm titanium coating on a titanium dioxide (TiO) microstructure containing microneedles (height ∼2 μm and width ∼4.5 μm), demonstrates enhanced biocompatibility and thermal conductivity compared to the conventional TiO microstructure (MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!