In contrast to their symmetrical analogues, nonsymmetrical PNP-type ligand motifs have been less investigated despite the modular pincer structure. However, the introduction of mixed phosphorus donor moieties provides access to a larger variety of PNP ligands. Herein, a facile solid-phase synthesis approach towards a diverse PNP-pincer ligand library of 14 members is reported. Contrary to often challenging workup procedures in solution-phase, only simple workup steps are required. The corresponding supported ruthenium-PNP catalysts are screened in ester hydrogenation. Usually, industrially applied heterogeneous catalysts require harsh conditions in this reaction (250-350 °C at 100-200 bar) often leading to reduced selectivities. Heterogenized reusable Ru-PNP catalysts are capable of reducing esters and lactones selectively under mild conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916561PMC
http://dx.doi.org/10.1002/chem.201903379DOI Listing

Publication Analysis

Top Keywords

ester hydrogenation
8
preparation series
4
series supported
4
supported nonsymmetrical
4
nonsymmetrical pnp-pincer
4
pnp-pincer ligands
4
ligands application
4
application ester
4
hydrogenation contrast
4
contrast symmetrical
4

Similar Publications

Silk-engineered bioactive nanoparticles for targeted alleviation of acute inflammatory disease via macrophage reprogramming.

J Nanobiotechnology

January 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China.

Significant progress has been made in the development of potential therapies for diseases associated with inflammation and oxidative stress. Nevertheless, the availability of effective clinical treatments remains limited. Herein, we introduce a novel silk-based bioactive material, TPSF, developed by sequentially conjugating Tempol and phenylboronic acid pinacol ester to silk fibroin.

View Article and Find Full Text PDF

Covalent Grafting of Graphene Quantum Dots onto Stepped TiO-Mediated Electronic Modulation for Electrocatalytic Hydrogen Evolution.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou 225002, China.

The interaction between electrocatalytic active centers and their support is essential to the electrocatalytic performance, which could regulate the electronic structure of the metal centers but requires precise design. Herein, we report on covalent grafting of graphene quantum dots (GQDs) on stepped TiO as a support to anchoring cobalt phosphide nanoparticles (CoP/GQD/S-TiO) for electrocatalytic hydrogen evolution reaction (HER). The covalent ester bonds between GQDs and TiO endow enlarged anchoring sites to achieve highly dispersed electroactive CoP nanoparticles but, more importantly, provide an efficient electron-transfer pathway from TiO to GQDs which could regulate the electronic structure of CoP.

View Article and Find Full Text PDF

Organophosphate esters inhibit enzymatic proteolysis through non-covalent interactions.

Environ Int

January 2025

Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China. Electronic address:

Enzymatic proteolysis is the key process to produce bioavailable nitrogen in natural terrestrial and aquatic ecosystems for microorganisms and plants. However, little is known on how protein degradation is influenced by organic contaminants. As we known, the overuse of organophosphate esters (OPEs) has caused serious pollution in soil, water, and sediment.

View Article and Find Full Text PDF

Background: 6-Nitrodopamine (6-ND) released from rat vas deferens acts an endogenous modulator of vas deferens contractility.

Objectives: To investigate whether rat isolated seminal vesicles (RISV) releases 6-ND, the mechanisms involved in the release, and the modulatory role of 6-ND on tissue contractility.

Methods: Rat seminal vesicles were removed and placed in Krebs-Henseleit's solution at 37°C for 30 min, and an aliquot was used to analyze the concentrations of 6-ND, dopamine, noradrenaline, and adrenaline by liquid chromatography with tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Exploring the synergistic effect of Lactiplantibacillus plantarum 1-24-LJ and lipase on improving Quality, Flavor, and safety of Suanzharou.

Food Res Int

January 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China. Electronic address:

The aim of this study was to investigate the effects of the addition of Lactiplantibacillus plantarum 1-24-LJ and lipase on physicochemical indexes, nutrition, and flavour substances during Suanzharou's fermentation. Individually, the lipase supplementation expedited the synthesis of organic acids and free fatty acids, thus rapidly acidifying the fermentation environment. Compared to C (8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!