Purpose: Respiratory motion in the chest region during single photon emission computed tomography (SPECT) is a major degrading factor that reduces the accuracy of image quantification. This effect is more notable when the tumor is very small, or the spatial resolution of the imaging system is less than the respiratory motion amplitude. Small animals imaging systems with sub-millimeter spatial resolution need more attention to the respiratory motion for quantitative studies. We developed a motion-embedded four-dimensional (4D)-multi pinhole SPECT (MPS) reconstruction algorithm for respiratory motion correction. This algorithm makes full use of projection statistics for reconstruction of every individual frame.

Methods: The ROBY phantom with small tumors in liver was generated in eight different phases during one respiratory cycle. The MPS projections were modeled using a fast ray tracing method simulating an MPS acquisition. Individual frames were reconstructed and used for motion estimation. The Demons non-rigid registration algorithm was used to calculate deformation vector fields (DVFs) for simultaneous motion correction and image reconstruction. A motion-embedded 4D-MPS method was used to reconstruct images using all the projections and corresponding DVFs, simultaneously. The 4D-MPS reconstructed images were compared to the low-count single frame (LCSF) reconstructed image, the three-dimensional (3D)-MPS images reconstructed using individual frames, and post reconstruction registration (PRR) that aligns all individual phases to a reference frame using Demons-derived DVFs. The tumor volume relative error (TVE), tumor contrast relative error (TCE), and dice index (DI) for 2, 3, and 4 mm liver were calculated and compared for different reconstruction methods.

Results: For the 4D-MPS reconstruction method, TVE was reduced and DI was higher compared to PRR, 3D-MPS, and LCSF. The extent of the improvement was higher for the small tumor size (i.e. 2 mm). For the biggest tumor in contrast 3 (i.e. 4 mm) TVE for 4D-MPS, PRR, 3D-MPS and, LCSF were 1.33%, 8%, 8%, and 14.67%, respectively.

Conclusions: The results suggest that motion-embedded 4D-MPS method is an effective and practical way for respiratory motion correction. It reconstructs high quality gated frames while using all projection data to reconstruct each frame.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.13807DOI Listing

Publication Analysis

Top Keywords

respiratory motion
24
motion correction
16
motion
8
correction image
8
image reconstruction
8
4d-multi pinhole
8
spatial resolution
8
individual frames
8
motion-embedded 4d-mps
8
4d-mps method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!