Wild animals entering captivity experience radical lifestyle changes resulting in microbiome alterations. However, little is known about the factors that drive microbial community shifts in captivity, and what actions could mitigate microbial changes. Using white-throated woodrats (Neotoma albigula), we tested whether offering natural diets in captivity facilitates retention of native microbial communities of captive animals. Wild-caught woodrats were brought to laboratory conditions. Woodrats received either a natural diet of Opuntia cactus or an artificial diet of commercial chow over three weeks. Microbial inventories from woodrat feces at the time of capture and in captivity were generated using Illumina 16S rRNA sequencing. We found that providing woodrats with wild-natural diets significantly mitigated alterations in their microbiota, promoting a 90% retention of native microbial communities across the experiment. In contrast, the artificial diet significantly impacted microbial structure to the extent that 38% of the natural microflora was lost. Core bacteria including Bifidobacterium and Allobaculum were lost, and abundances of microbes related to oxalate degradation decreased in individuals fed artificial but not natural diets. These results highlight the importance of supplementing captive diets with natural foods to maintain native microbiomes of animals kept in artificial conditions for scientific or conservation purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6908644 | PMC |
http://dx.doi.org/10.1038/s41396-019-0497-6 | DOI Listing |
Commun Biol
December 2024
Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
High-fat diet (HFD) induces low-grade chronic inflammation, contributing to obesity and insulin resistance. However, the precise mechanisms triggering obesity-associated metabolic inflammation remain elusive. In this study, we identified epigenetic factor Brd4 as a key player in this process by regulating the expression of Ccr2/Ccr5 in colonic macrophage.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Natural Science, Walter Sisulu University, Mthatha, South Africa.
Changing climates threaten crop growth and fodder yields in dryland farming. This study assessed two radish genotypes (LINE 2, ENDURANCE) under three water regimes (W1 = well-watered, W2 = moderate stress, W3 = severe stress) and two leaf harvesting options over two seasons (2021/22 and 2022/23). Key findings revealed that water regime significantly (P < 0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.
Adipose tissue-derived adipokines facilitate inter-organ communication between adipose tissue and other organs. Omentin-1, an adipokine, has been implicated in the regulation of glucose and insulin metabolism. However, limited knowledge exists regarding the regulatory impact of endogenous omentin-1 on hepatic steatosis.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
The objective of this research was to examine the impact of feeding biologically treated rumen digesta (BTRD) to Holstein steer calves at levels of 0, 10, 20, and 30% (DM-based) on feed consumption, nutrient digestion, growth performance, rumen fermentation, and plasma metabolites. Sixteen Holstein steer calves with an initial BW of 113 ± 8 kg were randomly allocated in a randomized complete design. Dietary inclusion of BTRD in calves diet did not altered (P < 0.
View Article and Find Full Text PDFSci Rep
December 2024
College of Economics and Management, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
Resources and land carrying capacity are vital to the survival and development of human society and form the foundation for ensuring food security. However, evaluating land carrying capacity solely based on grain production is overly simplistic. A comprehensive assessment from the perspective of dietary nutrition is needed to more accurately reflect the actual carrying capacity of land.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!