Dairy farms with intensive grazing systems combine grazing with supplemental feeding, which can be challenging because an incorrect balance between fresh grass allowance and feed supplementation results in inefficient use of the pasture, lower feed efficiency, and potential decreases in animal production. When estimating fresh grass allowance, we currently do not correct for the formation of rejected patches (RP) surrounding excreta, which can lead to overestimation of the potential fresh grass intake and hampers optimal grazing. In this study, therefore, we aim to quantify the formation of RP in intensive grazing systems and improve the quantification of fresh grass allowance. To do so, we studied 2 grazing systems (i.e., compartmented continuous grazing and strip grazing) that differ in key grazing characteristics, such as pre- and post-grazing heights and period of regrowth. The experiment was performed from April to October in 2016 and 2017 with 60 dairy cows at a fixed stocking rate of 7.5 cows/ha. Average pre-grazing grass height was measured with a rising plate meter. To quantify the formation of RP after grazing, individual grass height measurements were conducted after grazing and classified as RP or not, based on visual assessment. Our analysis showed that the average percentage of grassland covered with RP increased from around 22% at the end of May to around 43% at the end of July/beginning of August, and these percentages do not differ across grazing systems. The percentage of grassland covered with RP should be subtracted from the total grazed area to better estimate true fresh grass allowance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2018-16120 | DOI Listing |
Molecules
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
Under mild conditions, formic acid effectively separates the components of lignocellulose, removing the majority of the hemicellulose and lignin from the cellulose. However, it has not yet been determined if multiple treatments with fresh formic acid may totally remove hemicellulose and lignin. In this study, fresh formic acid was used to repeatedly pretreat the bamboo powder, and the effect of multiple treatments on the physicochemical structure of the bamboo powder was investigated using changes in fractions, enzymatic hydrolysis, hydrophilicity, cellulose crystallinity, and lignin structure.
View Article and Find Full Text PDFBMC Microbiol
January 2025
College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan Province, 450046, P. R. China.
Sorghum (Sorghum bicolor) is an important food and feed crop. Root-lesion nematodes (Pratylenchus spp.) are a group of pathogenic nematodes that cause severe economic losses in various food and cash crops.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
In this research, the effect of seed halopriming with plasma activated water (PAW) on wheat germination parameters have been studied. Response surface methodology was used to investigate the effect of three factors including: 1) type of water (distilled water, 0.2 and 0.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China.
Sugarcane tops silage (STS), as a source of roughage for ruminants, is rich in water-soluble carbohydrate (WSC) content, which significantly affects silage quality. Citric acid (CA) is a low-cost natural antimicrobial agent that can inhibit undesirable microbes and improve silage quality. The objectives of this study were to investigate the effects of CA on the chemical composition, fermentation quality, microbial communities, and metabolic pathways of STS with high and low WSC contents before or after aerobic exposure.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
Waterlogging (WL) is an important abiotic stress, severely affecting plant growth and development, inhibiting root respiration and degradation of chlorophyll, senescence of leaves and chlorosis leading to substantial yield loss. These intensities of yield losses generally depend on the duration of WL and crop growth stages. Maize being a dry land crop is particularly sensitive to WL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!