We review evidence that suggests a role for excessive consumption of energy-dense foods, particularly fructose, and consequent obesity and insulin resistance (metabolic syndrome) in the recent increase in prevalence of autism spectrum disorders (ASD). Maternal insulin resistance, obesity, and diabetes may predispose offspring to ASD by mechanisms involving chronic activation of anabolic cellular pathways and a lack of metabolic switching to ketosis resulting in a deficit in GABAergic signaling and neuronal network hyperexcitability. Metabolic reprogramming by epigenetic DNA and chromatin modifications may contribute to alterations in gene expression that result in ASD. These mechanistic insights suggest that interventions that improve metabolic health such as intermittent fasting and exercise may ameliorate developmental neuronal network abnormalities and consequent behavioral manifestations in ASD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779523 | PMC |
http://dx.doi.org/10.1016/j.tins.2019.08.006 | DOI Listing |
Langmuir
January 2025
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.
Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.
Snails belonging to the genus Biomphalaria serve as obligatory intermediate hosts for the trematode Schistosoma mansoni, the causative agent for the most widespread form of schistosomiasis. The simpler nervous systems of gastropod molluscs, such as Biomphalaria, provide advantageous models for investigating neural responses to infection at the cellular and network levels. The present study examined neuropeptides related to cholecystokinin (CCK), a major multifunctional regulator of central nervous system (CNS) function in mammals.
View Article and Find Full Text PDFCommun Biol
January 2025
Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood.
View Article and Find Full Text PDFISA Trans
January 2025
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
This paper addresses the critical challenge of interpretability in machine learning methods for machine fault diagnosis by introducing a novel ad hoc interpretable neural network structure called Sparse Temporal Logic Network (STLN). STLN conceptualizes network neurons as logical propositions and constructs formal connections between them using specified logical operators, which can be articulated and understood as a formal language called Weighted Signal Temporal Logic. The network includes a basic word network using wavelet kernels to extract intelligible features, a transformer encoder with sparse and structured neural attention to locate informative signal segments relevant to decision-making, and a logic network to synthesize a coherent language for fault explanation.
View Article and Find Full Text PDFJ Neurosci
January 2025
department of radiology, the first hospital of China medical University, Shenyang,110001, China
Hierarchy has been identified as a principle underlying the organization of human brain networks. However, it remains unclear how the network hierarchy is disrupted in Parkinson's disease (PD) motor symptoms and, how it is modulated by the underlying genetic architecture. The aim of this study was to explore alterations in the motor functional hierarchical organization of the cerebrum and their underlying genetic mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!