A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitric oxide regulates the firing rate of neuronal subtypes in the guinea pig ventral cochlear nucleus. | LitMetric

Nitric oxide regulates the firing rate of neuronal subtypes in the guinea pig ventral cochlear nucleus.

Eur J Neurosci

Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK.

Published: February 2020

The gaseous free radical, nitric oxide (NO) acts as a ubiquitous neuromodulator, contributing to synaptic plasticity in a complex way that can involve either long term potentiation or depression. It is produced by neuronal nitric oxide synthase (nNOS) which is presynaptically expressed and also located postsynaptically in the membrane and cytoplasm of a subpopulation of each major neuronal type in the ventral cochlear nucleus (VCN). We have used iontophoresis in vivo to study the effect of the NOS inhibitor L-NAME (L-NG-Nitroarginine methyl ester) and the NO donors SIN-1 (3-Morpholinosydnonimine hydrochloride) and SNOG (S-Nitrosoglutathione) on VCN units under urethane anaesthesia. Collectively, both donors produced increases and decreases in driven and spontaneous firing rates of some neurones. Inhibition of endogenous NO production with L-NAME evoked a consistent increase in driven firing rates in 18% of units without much effect on spontaneous rate. This reduction of gain produced by endogenous NO was mirrored when studying the effect of L-NAME on NMDA(N-Methyl-D-aspartic acid)-evoked excitation, with 30% of units showing enhanced NMDA-evoked excitation during L-NAME application (reduced NO levels). Approximately 25% of neurones contain nNOS and the NO produced can modulate the firing rate of the main principal cells: medium stellates (choppers), large stellates (onset responses) and bushy cells (primary-like responses). The main endogenous role of NO seems to be to partly suppress driven firing rates associated with NMDA channel activity but there is scope for it to increase neural gain if there were a pathological increase in its production following hearing loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078996PMC
http://dx.doi.org/10.1111/ejn.14572DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
firing rates
12
firing rate
8
ventral cochlear
8
cochlear nucleus
8
driven firing
8
firing
5
oxide regulates
4
regulates firing
4
rate neuronal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!