Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plant interactions with herbivores and pathogens are among the most widespread ecological relationships, and show many congruent properties. Despite these similarities, general models describing how plant defenses function in ecosystems, and the prioritization of responses to emerging challenges such as climate change, invasive species and habitat alteration, often differ markedly between entomologists and plant pathologists. We posit that some fundamental distinctions between how insects and pathogens interact with plants underlie these differences. We propose a conceptual framework to help incorporate these distinctions into robust models and research priorities. The most salient distinctions include features of host-searching behavior, evasion of plant defenses, plant tolerance to utilization, and sources of insect and microbial population regulation. Collectively, these features lead to relatively more diffuse and environmentally mediated plant-insect interactions, and more intimate and genetically driven plant-pathogen interactions. Specific features of insect vs pathogen life histories can also yield different patterns of spatiotemporal dynamics. These differences can become increasingly pronounced when scaling from controlled laboratory to open ecological systems. Integrating these differences alongside similarities can foster improved models and research approaches to plant defense, trophic interactions, coevolutionary dynamics, food security and resource management, and provide guidance as traditional departments increase collaborations, or merge into larger units.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.16181 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!